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Abstract

This thesis studies the application of compressed sensing (CS) to computed to-
mography (CT) for high quality CT image reconstruction with low dose X-ray
radiation. X-ray CT has been a popular medical imaging modality because of its
ability to provide a wide coverage of the examination area, fast scanning speed,
high spatial resolution, ease of operation and relatively low operation cost. It
plays an important role in diagnosis and thus benefits patients greatly. In gen-
eral, a considerable amount of X-ray radiation is needed for the production of CT
images of high quality, but increased X-ray radiation dose can damage healthy
cells and raise the risk of cancer. Therefore, to reduce the X-ray radiation dose
to patients and preserve imaging quality has been a significant and challenging
problem in CT development. CS technology is an emerging research area which
recovers signals from far fewer samples than required by the Shannon-Nyquist
sampling theorem. There have been a number of CS-based techniques applied to
CT reconstruction problems subjected to under-sampled or noisy data.

The theoretical results from CS do not extend to the CT setting. There is a fun-
damental lack of understanding about which type of under-sampling is favourable
to CS reconstruction of CT images. One reason is that the CS theory requires
the sampling matrix in the sparsifying domain to meet an incoherence condition
in terms of the restricted isometry property (RIP), which cannot be tested by a
known polynomial-time algorithm. It is a key challenge as well as the first task of
this thesis to carry out analysis of the incoherence property of the CT data scan-
ning schemes for successful CS reconstruction. The property of the system matrix
of fan-beam CT is investigated to achieve low radiation dose while maintaining
good reconstruction quality through CS. To reduce the radiation dose, scanning
data is under-sampled in both the view and bin direction. For the limited-angle
scanning, two sampling patterns are adopted: golden-angle and random-angle.
For the sparse-bin setting, the reduced detectors are either evenly or randomly
distributed. The analysis is conducted based on the point spread function (PSF)
and the Fourier slice theorem (FST), respectively. The results of the analysis are
verified by simulations and it is shown that high-quality CT reconstruction can
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be achieved with random-detector and golden-angle scanning schemes.

The thesis further proposes two novel reconstruction models for the reduction of
X-ray radiation dose in CT examinations without compromising image quality by
CS. Theoretical analysis shows that both models conform to the requirement of
CS, and successful reconstruction is validated by simulations. In the first model,
the CT projections are first converted to Mojette projections. Then 1-dimensional
Fourier transform is applied to the modified Mojette projections, followed by an
exact mapping of the gained Fourier coefficients to the 2-dimensional Fourier do-
main of the scanning object. Finally the scanned object can be reconstructed
from the partial Fourier coefficients by CS. In the second model, the smooth-
ness of the sinogram data set and the sparsity of its frequency transformation
are exploited, which in conjunction with a randomly projected X-ray radiation
scheme, can result in a randomly under-sampled partial Fourier matrix as the
sensing matrix for CS reconstruction. The formulation of this CT data acquisi-
tion and reconstruction scheme satisfies the incoherence and sparsity properties
required by CS theory. Based on this scheme, a weighted `1 regularized opti-
mization algorithm is proposed for computing the CS image reconstruction. The
reconstruction performance and advantages over other known CT reconstruction
methods are demonstrated using simulated phantom and CT images.

To summarize, the contributions of the thesis are two-fold. First, we bridge
the gap between the theoretical CS requirement and the practical CT setting.
Secondly, two novel models for CT reconstruction are proposed, which apply the
CS theory to produce satisfactory CT images.
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Chapter 1

Introduction

1.1 Motivation and Objective

X-ray computed tomography (CT) is a technology that provides the user with
virtual slices inside the object by using computer-processed X-rays to produce
tomographic images of specific areas of a scanned object instead of cutting the
object. The inner structures are revealed based on their ability to attenuate the
X-ray beam. The significant clinical benefits of CT in medical imaging and health
care were immediately recognized following its introduction into clinical practice
in 1972, when Sir Godfrey Hounseld at EMI patented the first CT scanner. Since
that time, there has been extensive growth in the number of CT scanners and
the frequency of CT examinations. It was cited as one of the most significant
medical innovations in the previous decades in a US survey [121]. The use of
CT scans in US has increased more than 3-fold since 1993 to approximately 70
million scans annually [11]. Its popularity is based on its capability of providing a
wide coverage of the area of interest in a short time, high spatial resolution, ease
of operation and relatively low acquisition cost. Hence, as a popular and useful
medical tool, CT plays an important role in diagnosis and thus benefits patients
greatly.

Despite the fact that CT provides invaluable information for diagnosis and pa-
tient management, there is concern about potential future cancer risks because
CT scans involve much higher radiation doses than conventional diagnostic X-
rays. It is known that the ionizing radiation can break important biomolecules
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Chapter 1. Introduction

(e.g. DNA), damaging or killing the affected cell, or in the worst case causing
cancer. CT alone contributes almost one half of the total radiation exposure
from medical use and one quarter of the average radiation exposure per capita in
US [1], but this high figure is mostly due to the large number of persons exposed
annually. An Australian study of 10.9 million people [102] reported that the
increased incidence of cancer after CT scan exposure in this cohort was mostly
due to irradiation, where one in every 1800 CT scans was followed by an excess
cancer. Hence, the risks to individuals are likely to be almost invisible compared
to the health benefits of a timely, accurate and non-invasive diagnosis that CT
facilitates. Nevertheless, since the cancer risk associated with the radiation dose
in CT is not zero, the dose-conscious CT community will continue to list radia-
tion reduction as one of the top priorities, particularly in light of the continued
increase in the number of CT examinations performed annually worldwide [164].

The most intuitive and straightforward method of reducing radiation dose is to
take fewer projections, which is the focus of this thesis. The reduction of projec-
tion data can also lead to other benefits, such as reducing scan time and improving
time-resolution in cardiac CT. However, it creates challenges for maintaining a
high image quality, as the projection data is not sufficient for exact reconstruc-
tion of tomographic images according to the Nyquist-Shannon sampling theorem.
This fundamental theorem in signal processing expresses the sample rate in terms
of the signal’s bandwidth and states that a band-limited analogue signal that has
been sampled can be perfectly reconstructed from an infinite sequence of samples
if the sampling rate exceeds twice the signal’s bandwidth. The rate is known as
the Nyquist rate. When the projections are fewer for the sake of low radiation,
the sample rate falls below the Nyquist rate and becomes so insufficient that
the application of standard analytic algorithms such as filtered back-projection
(FBP) can cause conspicuous artifacts in reconstructed images. Hence, the image
quality of CT is generally proportional to the radiation dose, and to reduce the
X-ray radiation dose to patients without compromising the imaging quality is an
important and challenging problem in CT development.

Fortunately, the Nyquist-Shannon sampling theorem does not preclude the pos-
sibility of perfect reconstruction under special circumstances that do not satisfy
the sample-rate criterion. The emerging technology, compressed sensing (CS),
also known as compressive sampling or compressive sensing, can achieve perfect
signal recovery from much fewer measurements than usually required by the clas-
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sic Shannon-Nyquist criterion. There are however, two conditions to be satisfied
for perfect recovery: the signal sparsity, and the restricted isometry property
(RIP) of the sensing matrix. Basically, CS exploits the sparseness or compress-
ibility of signals in a predefined basis/frame, and uses it as the constraint to
solve an under-determined linear system. The required number of measurements
is proportional to the number of non-zero elements in the sparse representation
of signals. CS has gained wide attention since it was proposed in 2004 by Em-
manuel Candès, Terence Tao, and David Donoho [21–23, 40, 149], and medical
imaging is a prominent application for two obvious reasons. One is that most
medical images can be sparsely represented by some linear transformation, and
the other is that medical scanners obtain encoded samples. The most active area
of CS application, however, is not in CT, but in magnetic resonance imaging
(MRI) [26,94,95]. CS addresses the issue of high scan time in MRI by measuring
fewer Fourier coefficients, and since the partial Fourier matrix has been proved
to satisfy RIP, MRI reconstruction satisfies the requirement of CS. Hence, all the
CS-based research in MRI has a solid theoretical foundation. In the case of CT, a
number of CS-based techniques have also been introduced to CT reconstruction
problems subject to under-sampled or noisy data [29,70,139,140]. In spite of all
these efforts, many problems are still open and call for further studies. One of
the main challenges lies in the fact that the theoretical results from CS have not
to date been extended to the CT setting. In other words, the CT system matrix
has not been shown to satisfy RIP. There is a fundamental lack of understanding
about which type of under-sampling is favourable to post CS reconstruction. In
addition, reconstruction accuracy and speed can both be improved.

In summary, the application of CS has the advantage of radiation reduction while
maintaining high recovery quality. It has therefore become one of the central
topics in CT imaging. Our main object is to address the current disadvantages
of CS in CT mentioned above and provide some more advanced understanding
about the RIP of the CT system matrix, i.e. to achieve incoherence in designing
CT data acquisition schemes for successful CS reconstruction. It may well be
seen as a step forward in attempting to bridge the theoretical gap. We also
expect to deepen our understanding by developing novel reconstruction models
that not only conform to the requirement of CS, but also outperform existing
methods with respect to accuracy and efficiency. There are three types of CT
in terms of the beam configuration: parallel-beam, fan-beam, and cone-beam,
with the former two types in 2-D domain and the third type in 3-D domain.
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Despite the popularity of cone-beam CT in current diagnosis system, it involves
complicated geometry settings as well as large-volume data, which makes the
reconstruction quite computational demanding. To start with a relatively simple
configuration, we make the analysis mostly based on fan-beam CT. As a matter
of fact, cone-beam CT can be seen as a generation of fan-beam CT and these two
configurations have many similarities. Since the fundamental CS-based principles
remain the same, the fan-beam CT based-analysis in this thesis can provide some
preliminary knowledge for the future analysis of cone-beam CT and the extension
is quite straightforward.

1.2 Main Contributions

The main contributions of the thesis are as follows:

• In order to extend the theoretical results from CS to the CT setting, we
decompose the system matrix based on Fourier slice theorem (FST), which
is inspired by the fact that the RIP of the Fourier matrix is well defined.
To the best of our knowledge, we are the first to tackle the RIP of the CT
system matrix from this aspect. Four specific sampling schemes are studied:
golden-angle and random-angle, and regular-detector and random-detector.
After analyzing the effect of different schemes on the FST-based model, we
reveal the favourable sampling schemes for CS-based reconstruction. This
part of content can be mainly found in Chapters 4 and 5.

• With the same purpose as above, we take the analysis from another view
based on point spread function (PSF). The Frobenius norm of the difference
matrix between PSF and the identity matrix is proposed as an evaluation
index. The lower the Frobenius norm, the better the reconstruction. In
contrast, high off-diagonal interference in PSF implies low-quality recovery.
Simulation results show that the index developed in this thesis is more
sensitive than the maximum of the sidelobe-to-peak ratio (SPR), which is
currently used to evaluate the incoherence of the system matrix. This part
of content can be mainly found in Chapter 5.

• We gain deeper understanding of the direct application of CS in CT re-
construction by presenting a novel frame that satisfies the requirement of
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CS for parallel-beam CT. The sinogram is first converted to the projections
gained through Mojette transform, which is an exact discretization of the
Radon transform. On each view angle, the projections are summed up with
the application of certain principles. Then the 1-D Fourier coefficients of
the merged projections are mapped to the 2-D Fourier domain of the object.
Finally, compressed sensing is employed to deal with the partial Fourier co-
efficients and is shown to recover the object very well and suppress the small
noise effectively. Experimental results have demonstrated the advantages of
the proposed method. With the use of Mojette transform and compressed
sensing, the purpose of reducing the radiation dosage during CT examina-
tions without compromising image quality is achieved. This part of content
can be mainly found in Chapter 6.

• CS is applied to indirectly reconstruct the sparse or compressible Fourier
coefficients of the sinogram rather than to recover the object directly from
the sinogram data set. The smoothness of the sinogram data set and the
sparsity of its frequency transformation are exploited, which in conjunction
with a randomly projected X-ray radiation scheme, can result in a randomly
under-sampled partial Fourier matrix as the sensing matrix for CS recon-
struction. The formulation of this CT data acquisition and reconstruction
scheme satisfies the incoherence and sparsity properties required by CS the-
ory. Based on this scheme, a weighted `1 regularized optimization algorithm
is proposed for computing the CS image reconstruction. The reconstruction
performance and advantages over other known CT reconstruction methods
are demonstrated by simulated phantom and CT images. This part of con-
tent can be mainly found in Chapter 7.

1.3 Outline of Thesis

This thesis explores the application of CS in CT for low-dose radiation yet high-
quality reconstruction, in an attempt to bridge the gap between the CS theory
and the practical CT setting. The rest of the thesis is organized as follows:

In Chapter 2, the fundamentals of computed tomography are introduced. We
start with the development of CT, from the very first scanner to different gen-
erations: parallel-beam, fan-beam and cone-beam. The physical theory of CT
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is then described, as well as the cause and appearance of various artifacts. In
the following section, we focus on low-radiation CT, revealing its benefits and
guiding principles, the quantification of radiation and effective dose-management
strategies. Finally, both the analytical and iterative reconstruction algorithms
are depicted in detail, together with their advantages and disadvantages.

In Chapter 3, the foundation of compressed sensing is laid. To begin with, we
provide the problem statement and give the associated two main solvers: basis
pursuit and greedy algorithms. Then the two key elements of CS theorem are de-
scribed in detail: sparse/compressible signals and the RIP of the sensing matrix.
These two work together to guarantee the uniqueness of the solution. RIP for a
random Fourier matrix is specifically mentioned as it is related closely to the CT
system as will be seen in Chapter 4. Finally, we present the application of CS
in CT, which highlights the TV regularization and the prior image constrained
compressed sensing (PICSS).

In Chapter 4, we analyse sampling schemes in CT. It is a transitional chap-
ter, which prepares for the FST-based analysis of the system matrix in Chap-
ter 5. First, the full scanning fan-beam CT is illustrated, followed by the in-
troduction of the sparse-view and sparse-detector CT, which leads to four spe-
cific sampling schemes: golden-angle and random-angle, and regular-detector and
random-detector. Then we build the projection model of parallel-beam CT based
on the preliminary knowledge of FST and the relation between different Fourier
transforms. The analysis of the model states that the error becomes negligible
when the padding size is sufficiently large. Next, we bridge the gap between the
built model and fan-beam CT by revealing the rebinning relationship between
fan-beam CT and parallel-beam CT, and depict in detail what the model is like
for full-scanning, sparse-view and sparse-detector fan-beam CT, respectively. Fi-
nally, a simple simulation is run to validate the accuracy of the model compared
with the Matlab built-in model and the linear intersection model.

In Chapter 5, the property of the system matrix for fan-beam CT is investigated
with the purpose of both reducing the radiation dose and preserving high-quality
recovery. With under-sampled projections, CS is employed for recovery using
the optimization algorithm of TVAL3, and has shown advantages over FBP in
the simulations. Four under-sampling patterns are considered: golden-angle and
random-angle, and regular-detector and random-detector. Two tools are used for
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the analysis of the impacts of different sampling schemes on reconstructions: PSF
and FST. Based on PSF, an evaluation index is proposed: the Frobenius norm Υ
of the difference matrix between PSF and the identity matrix. The lower the Υ,
the better the reconstruction. In contrast, high off-diagonal interference in PSF
implies low-quality recovery. Based on FST, the system matrix is decomposed
to Fourier matrix and our aim is converted to the study of sampling on the
Fourier matrix. It is shown that the golden-angle system obtains lower Υ than the
random-angle and the random-detector setting obtains lower Υ than the regular-
detector. Experiments are conducted on phantom and real CT images, for which
the results are measured by normalized mean square error (NMSE). The results
are consistent with the indicator results, with golden-angle scanning and random-
detector setting obtaining lower NMSE than the other two, respectively. With
both the theoretical and experimental analysis, the purpose of reducing radiation
dose without compromising the reconstruction quality is achieved. The conclusion
is that golden-angle and random-detector scanning is the most favourable for the
post CS-based reconstruction.

In Chapter 6, we analyse the direct application of CS in CT by presenting a novel
frame for parallel-beam CT reconstruction. First, the sinogram is converted to the
projections gained through Mojette transform, which is an exact discretization of
the Radon transform. On each view angle, the projections are summed up with
the application of certain principles. Then the 1-D Fourier coefficients of the
merged projections are mapped to the 2-D Fourier domain of the object. Finally,
compressed sensing is employed to deal with the partial Fourier coefficients via the
specific optimization algorithm of RecPF, which can recover the object very well
and suppress the small noise effectively. Experimental results have demonstrated
the advantages of the proposed method. With the use of Mojette transform
and compressed sensing, the purpose of reducing the radiation dosage during CT
examinations without compromising image quality is achieved.

In Chapter 7, we analyse the indirect application of CS in CT reconstruction. A
CS approach to fan-beam CT image reconstruction is proposed for the purpose
of reducing the X-ray radiation dose in CT examinations without compromising
image quality. The proposed approach is novel in the sense that it overcomes the
difficulties of the existing CS approaches to CT image reconstruction which have
not been able to establish the incoherence and sparsity conditions required by the
CS theory for signal reconstruction. Instead of applying CS to the reconstruc-
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tion of the object directly from the sinogram data set, the proposed CS approach
indirectly reconstructs the sparse or compressible DFT of the sinogram via the
optimization algorithm of yall1. The correspondingly formulated sensing scheme
results in a randomly sampled partial DFT matrix which meets the theoretical
RIP condition for CS reconstruction. The proposed weighted `1 regularized opti-
mization algorithm takes into account the low pass property of the reconstruction
signal and its reconstruction results outperform the existing CSTV reconstruction
method.

In Chapter 8, we conclude the thesis and highlight some potential future research
directions.
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Chapter 2

Fundamentals of Computed
Tomography

2.1 History

X-ray computed tomography (CT) is a non-invasive technology that combines a
series of X-ray projections and computer processing methods to produce tomo-
graphic images (virtual ’slices’) of specific areas of the scanned object. The most
common application of X-ray CT is in medical imaging, as it provides a unique
way to look at the interior of a patient for diagnostic and therapeutic purposes.
Compared to traditional 2-D medical radiography, CT completely eliminates the
superimposition of images of structures outside the region of interest (ROI). It
possesses inherent high-contrast resolution and thus can distinguish differences
between tissues that differ in physical density by less than 1%. In addition, CT is
a multi-planar reformatted imaging technique and the scanned data can be viewed
as images in the transverse, coronal, or sagittal planes, as shown in Figure 2.1.

The history of the medical CT scanner is briefly recapitulated here [78] and
illustrated in Figure 2.2. The first commercially viable CT scanner was invented
by Sir Godfrey Hounsfield in the early 1970s, and is known as the first-generation
system. It used a parallel-beam/pencil-beam geometry and the projections were
measured by moving an X-ray source and detector along parallel lines on opposite
sides of an object. As it could record only a single data point at a time, this system
was very time-consuming and soon replaced by the second generation scanners
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Figure 2.1: Body planes

which used divergent-beam/fan-beam geometry. It used the source translate-
rotate technology as the first generation but had multiple detectors and a fan-
shaped beam. The later two generations of scan configurations led to even faster
data collection. For the third generation, both the source and the detector array
were mounted on a yoke which rotated around the patient over 360◦. Data
collection time for such scanners ranged from 1 to 20 seconds. For the fourth
generation, a large number of detectors are mounted on a fixed ring. Inside
this ring there is an X-ray tube continually rotating around the patient. During
this rotation the output of the detector integrators facing the tube is sampled
every few milliseconds. In 1989, the first investigations and clinical trials of
spiral/helical CT were already completed, which symbolizes the transition from
slice-by-slice imaging to true volume imaging. The new machines are equipped
with a very large number of detector rows and with scanners based on cone-
beam geometry, as shown in Figure 2.3. The grid rotates around an axis in the
gantry. The table and the patient are placed in the gantry along this axis of
rotation. Depending on the motion of the table along the axis, helical or axial
scans can be obtained. Fully 3-D image reconstruction becomes possible as it
permits continuous rotation with the object being imaged slowly and smoothly
slid through the X-ray ring. Hence, modern multi-slice CT scanners allow the
performance of most desired examinations with very high reliability.

According to Kalender [78], "CT has shown a steady upward trend with respect
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to technology, performance and clinical use. The upward trend is unbroken for
the time being, and the position of CT in clinical radiology appears consolidated
to a higher degree than ever before."

(a) First generation: translation/rotation (b) Second generation: translation/rota-
tion

(c) Third generation: continuous rotation (d) Fourth generation: continuous rotation

Figure 2.2: Four scanner generations since the 1970s
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Figure 2.3: Cone-beam acquisition geometry

2.2 Physics

In the CT scanning shown in Figure 2.4, the beam attenuates due to the pho-
toelectric and Compton effects, respectively. Photoelectric absorption involves
an X-ray photon imparting all its energy to a tightly bound inner electron in an
atom. The electron uses some of this acquired energy to overcome the binding
energy within its shell, the rest appearing as the kinetic energy of the thus freed
electron. On the other hand, Compton scattering involves the interaction of the
X-ray photon with either a free electron, or one that is only loosely bound in one
of the outer shells of an atom. Because of this interaction, the X-ray photon is
deflected from its original direction of travel with some loss of energy, which is
gained by the electron [77].

Assume that the X-ray beam only consists of monoenergetic photons, let Nin be
the total number of photons entering the object, and Nout be the total number of
photons exiting through the beam on the detector side. When the beam width
is sufficiently small, the relationship between Nin and Nout is revealed in [60]:

Nout = Nine
−

∫
ray

µ(x,y)dr

where µ(x, y) denotes the attenuation function of the object with two space co-
ordinates x and y, and r is an element of length along the ray.

In practice, the X-ray source used for medical imaging is polychromatic rather
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Figure 2.4: CT scanning: the beam is measured on the detector side to
determine the attenuation of the object.

than monochromatic. The above equation no longer holds and is replaced by:

Sout(E) = Sin(E)e
−

∫
ray

µ(x,y,E)dr

where E stands for the energy, Sin(E) represents the incident photon number
density, also known as the energy spectral density of the incident photons, and
Sout(E) is obviously the density of the exiting photons.

CT images are maps of the relative linear attenuation values of tissues. The out-
puts of the computer attached to the scanner are integers called CT numbers, also
known as Hounsfield units (HUs). A HU is a function of the material attenuation
coefficient, defined as:

HU =
µ− µwater
µwater

× 1000

where µ is the attenuation coefficient of the material and µwater is that of water.

Various artifacts are commonly encountered in clinical CT and we briefly review
the cause and appearance of each type [16].

Ring artifact: A mis-calibrated or defective detector element results in rings
centred on the centre of rotation, hence the name. These can often be fixed
by recalibrating the detector.
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Noise: The statistical error of low photon counts causes Poisson noise, which
results in random thin bright and dark streaks that appear preferentially
along the direction of the greatest attenuation. It can be reduced using noise
reduction techniques, or iterative reconstruction, or by combining data from
multiple scans.

Beam hardening and scatter: Beam hardening is caused by the fact that the
linear attenuation coefficient for many tissues decreases with energy in the
energy ranges used for diagnostic examinations. The low energy photons
are preferentially absorbed, making the mean energy associated with the
exit spectrum higher than that associated with the incident spectrum, i.e.
the beam-hardening phenomenon. Both beam hardening and scatter cause
pseudo-enhancement of renal cysts and produce dark streaks between two
high attenuation objects, e.g. metal and bone, with surrounding bright
streaks. Iterative reconstruction can help to reduce them.

Metal artifact: Multiple mechanisms can cause metal streak artifacts, including
beam hardening, scatter, Poisson noise, motion, and edge effects. The metal
deletion technique is an iterative method that reduces artifacts and is quite
influential on the diagnosis.

2.3 Low-radiation CT

Despite the overwhelming benefits of CT for patients, concerns have been raised
regarding the potential risk of cancer from CT because the increased X-ray radi-
ation can lead to ionization of body cells. Since its introduction in 1973, CT has
established itself as a primary diagnostic imaging modality due to its tremendous
value. It is estimated that 67 million CT examinations were performed in 2006 in
the USA [1], up from 3 million in 1980 [18]. Because of its pervasive use in mod-
ern medical practice, CT alone contributed almost one half of the total radiation
exposure from medical use and one quarter of the average radiation exposure per
capita in 2009 in the USA [1]. Hence, it is clear that reducing radiation dose
ranks one of the top priorities of the CT community. Two guiding principles
must be followed [103]. First, CT examinations must be fully justified for each
individual patient. Second, for each CT examination, all technical aspects of the
examination must be optimized, such that the required level of image quality can
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be obtained while keeping the doses as low as possible [164].

To quantify CT radiation dose, several dose metrics are adopted: scanner ra-
diation output, organ dose and effective dose. Note that these metrics are not
a direct measurement of patient dose, but rather a standardized dose metric of
scanner output levels applying to standardized phantoms. To be specific, the
scanner radiation output is measured based on two acrylic phantoms: head and
body, currently represented by the volume CT dose index (CTDIvol). Organ
dose quantifies the radiation risk to a specific organ, and effective dose, typi-
cally expressed in the units of mSv, represents the ’whole-body equivalent’ dose
that would have a similar risk of health detriment as that due to partial body
irradiation. There are considerable uncertainties in evaluating the risk of devel-
oping a radiation-induced cancer when the dose is lower than 100 mSv. Since
the radiation dose is closely related to the CT image quality, keeping it as low as
reasonably achievable and consistent with the diagnostic task remains the most
important strategy for decreasing this potential risk [164]. Image quality can be
evaluated via several metrics: noise, high-contrast and low-contrast spatial reso-
lution. Therefore, it is crucial to recognize the requirements of specific diagnostic
tasks in approaching the goal of reducing radiation.

Various dose-management strategies for different types of CT have been proposed
and are reviewed below:

• CT system optimization

The dose efficiency of a CT system mainly depends on the detector, collima-
tor and beam-shaping filter. Two dose-relevant characteristics of a detector
are its quantum detection efficiency and geometrical efficiency, which to-
gether describe the effectiveness of the detector in converting incident X-ray
energy into signals. The design of the collimator can define the X-ray beam
accordingly and avoid unnecessary radiation exposure. Recent progress in-
volves reducing the amount of over-scanning in spiral CT, with up to 40% of
dose reduction reported [34]. The X-ray beam filter is a physical object that
attenuates and ’hardens’ the beam spectra to guarantee that the beam is
hard enough to efficiently penetrate the patient and give sufficient contrast
information. In addition, the current increasing use of dual-energy systems
for CT is also helpful for soft tissue segmentation in medical imaging.
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• Scan range

The scan range should be chosen carefully to cover the region of inter-
est and avoid the direct radiation exposure of other regions. It is a quite
straightforward way to keep the radiation low.

• Automatic exposure control

Automatic exposure control (AEC) aims to automatically modulate the
tube current to accommodate differences of patient anatomy, shape and
size, taking the projection angle, longitudinal location along the patient or
both as variables. This near-real time system can be fully preprogrammed
and has been adopted by the major manufacturers.

• Optimal tube potential

Recent physics and clinical studies [66, 150] have demonstrated that using
lower tube potentials (kV) can achieve dose reduction and contrast en-
hancement, but will result in noisier images. Therefore, there is a trade-off
between image noise and contrast in determining the tube potential value,
which is highly dependent on patient size and the diagnostic requirements.

• Data processing

Dose efficiency can be improved via data processing techniques: denoise, re-
construction and modelling. To control noise in CT, the filters are applied to
the raw/log-transformed sinogram or the reconstructed images. For recon-
struction, iterative algorithms are adopted instead of analytic algorithms,
since the former can recover the target from much fewer projections. Finally,
in order to determine the lowest possible radiation dose, researchers simu-
late CT examinations at different dose levels by inserting realistic quantum
and electronic noise and decide the dose according to the diagnostic task.

In addition to the general strategies described above, each CT clinical application
has its own considerations and limitations for dose reduction. The future per-
spective of radiation dose reduction includes individualizing scanning techniques,
novel reconstruction methods, photon-counting detectors, etc. To conclude, the
guiding principle for a medical CT examination is to keep the radiation dose as
low as reasonably achievable.
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2.4 Analytical Reconstruction

The mathematical foundation of tomographic reconstruction dates back to 1917
when an Austrian mathematician Johann Radon invented the Radon transform
[122], which states that an object can be reconstructed from an infinite set of its
projections and relates the projections and the object in the frequency domain. In
1937, a Polish mathematician, Stefan Kaczmarz, developed a method to find an
approximate solution to a large system of linear algebraic equations [75], which
laid down the basis for the powerful iterative reconstruction method. It was later
adapted by Sir Godfrey Hounsfield as the image reconstruction mechanism in
the first commercial CT scanner. Despite its early success, it was later replaced
by analytical methods due to its very high computational demands when the
amount of measured data increased, but has had a renaissance in recent years.
The analytical and iterative reconstruction algorithms are reviewed in Section 2.4
and Section 2.5, respectively.

2.4.1 Fourier Slice Theorem

We start with the mathematical basis of tomography and give the definition of
line integrals that compose the projections. The coordinate system is defined in
Figure 2.5, where the object is represented by a 2-D function f(x, y) and each
line integral by the angular and radial coordinates (θ, r).

The line integral s(θ, r) can be defined as

s(θ, r) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(r− x cos θ− y sin θ)dxdy (2.1)

where δ(·) is the Dirac delta function. The projection s(θ, r) is known as the
Radon transform of the object function f(x, y).

Conventional X-ray CT image reconstruction relies on analytical image recon-
struction methods, among which filtered back-projection (FBP) is the most pop-
ular. FBP is based on the Fourier slice theorem (FST), which proves that the 1-D
Fourier transform of the projections is equal to the 2-D Fourier transform of the
image evaluated on the line that the projection was taken. The derivation details
of FST are revealed below. The 1-D Fourier transform of the Radon transform
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Figure 2.5: The coordinate system

with regard to r is given by:

Ŝ(θ, ρ) =
∫ ∞
−∞

s(θ, r)e−jrρdr

with ρ as the index in frequency domain. Substituting (2.1) into the above
equation we find:

Ŝ(θ, ρ) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−jρ(x cos θ+y sin θ)dxdy (2.2)

Compared with the 2-D Fourier transform of the object f(x, y):

F̂ (u, v) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−j(ux+vy)dxdy (2.3)

with u, v as the index in frequency domain, it is easy to conclude that:

Ŝ(θ, ρ) = F̂ (ρ cos θ, ρ sin θ) (2.4)

This leads to the Fourier slice theorem stated below:

Theorem 2.1. [77] The Fourier transform of a parallel projection of an image
f(x, y) taken at angle θ gives a slice of the two-dimensional transform F̂ (u, v),
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subtending an angle θ with the u-axis.

For illustration, it is shown in Figure 2.6 that the Fourier transform of s(θ, r)
gives the values of F̂ (u, v) along line AB.

Figure 2.6: Illustration of FST

2.4.2 FBP for Parallel-beam and Fan-beam CT

In this section, we simply give the resulting analytical inversion formula, as its
derivation is quite straightforward and interested readers are referred to [77].
Consider the parallel-beam CT in Figure 2.7. Suppose that Ŝ(θ, ρ) is the 1-D
Fourier transform of a projection s(θ, r) with respect to r, we have:

f(x, y) =
∫ π

0
[
∫ ∞
−∞

Ŝ(θ, ρ)|ρ|ejρrdρ]dθ, r = x cos θ+ y sin θ

Assuming there are q views of projections, the implementation of the FBP algo-
rithm is presented below:

FBP algorithm
measure the projection s(θ, r)
apply 1-D Fourier transform to the projection w.r.t. r and obtain Ŝ(θ, ρ)
multiply Ŝ(θ, ρ) with the weighting function 2π|ρ|/q
sum over the image plane the inverse Fourier transform of the filtered projections
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Figure 2.7: Parallel projections

Consider the fan-beam CT with equiangular rays illustrated in Figure 2.8. The
source travels along a circular trajectory, with R as the distance from the object
centre and angle β to define its position. The curved detector array lies on a
circle of radius D centred at the source. Any ray in the fan beam is specified
by an angle γ ∈ [−γm, γm] that increases in the clockwise direction. Then the
standard FBP formula is [38]:

f(x, y) = 1
2

∫ 2π
0 dβ R

||(x−R cosβ,y−R sin β)T ||2
∫ γm
−γm dγhramp(sin(γ∗ − γ)) cos γsf (β, γ)

where hramp is the ramp filter, and γ∗ is the value of γ for the ray that connects
the X-ray source with (x, y)T :

γ∗ = tan−1(u∗/D) with u∗ =
D(−x sin β + y cos β)
R− x cos β − y sin β

The reconstruction speed of FBP is quite fast due to its simplicity and image
quality is usually satisfactory. However, a high volume of projections is required
by Shannon-Nyquist theorem [136]. As stated in [77], for a well-balanced n× n
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Figure 2.8: Fan-beam projections

reconstructed image, the number of rays in each projection should be roughly n
and the number of views should also be roughly n.

2.4.3 FDK and Katsevich Formula for Cone-beam CT

The interest in fully 3-D CT reconstruction increased with the development of
computing power. In 1984, Feldkamp, Davis, and Kress [49] proposed a fil-
tered back-projection algorithm for 3-D axial cone-beam CT, which was known
as FDK and later extended to more general scanning paths, such as the helix [151].
Throughout the present thesis, bold case letters/symbols denote vectors. The lo-
cal detector coordinate is defined in Figure 2.9, where the source curve is a helix,
given by:

y(φ) = [R cosφ R sinφ P
φ

2π ]
T , φ ∈ [0 2π)

where R is the helical radius and P is the helical pitch, i.e. the displacement of
the patient table per source turn. For a flat detector,

eb(φ) = [− sinφ cosφ 0]T
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Figure 2.9: Flat detector geometry

ec(φ) = [− cosφ − sinφ 0]T

ea = [0 0 1]T

where eb(φ) and ea span the detector, and ec(φ) points from the source to the
detector centre. (b∗, a∗) are the coordinates for the point of intersection of the
detector with the line passing through the source and e = [x0, y0, z0]T .

b∗ =
D

c∗(φ, e)
(−x0 sinφ+ y0 cosφ)

a∗ =
D

c∗(φ, e)
(z0 −

Pφ

2π )

where c∗(φ, e) = R+ < e, ec >= R− x0 cosφ− y0 sinφ. The unit vector which
defines the direction from the source to the detector at (b, a) is:

θ(φ, b, a) = 1√
b2 +D2 + a2 (beb(φ) +Dec(φ) + aea)

= 1√
b2+D2+a2 [−b sinφ−D cosφ b cosφ−D sinφ a]T

Given (φ, b, a), the X-ray projection data of the object f(e) with these local
coordinates can be expressed as:

gf (φ, b, a) = Df(y,θ) =
∫ ∞

0
f(y + tθ)dt (2.5)

where Df is the cone-beam transformation defined in R3.

Then the FDK method for a flat detector with a helical scanning path is formu-
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lated as:

f(e) =
∫ 2π

0

D2

(c∗)2

∫ b0

−b0
kb(b

∗ − b′)gf (φ, b′, a∗) Ddb′dφ√
D2 + (b′)2 + (a∗)2

,

where kb is a filtering kernel (e.g. Shepp-Logan) appropriate for 2-D reconstruc-
tion, and gf (φ, b, a) is the cone-beam data in local coordinates. The role played by
the filtering kernel is to reduce the blurring effect caused by the back-projection.
The implementation of FDK is straightforward and similar to that of FBP.

The FDK algorithm is fast and gives reasonable results in some circumstances,
but it is difficult to fully analyse its numerical properties and to predict recon-
struction artifacts, as the algorithm is based on an approximate inversion formula.
Since the FDK algorithm was proposed, a great deal of effort has been expended
in investigating faster and more accurate reconstruction methods. Alexander
Katsevich achieved a breakthrough in 2002 with a series of papers [79–82], in
which he proved a theoretically exact reconstruction formula of the filtered back-
projection type for helical cone-beam CT. The Katsevich formula makes use of
the π-line and κ-plane, where the π-line is defined to be any line segment that
connects two points on the helix which are separated by less than one helical turn,
and the κ-plane is any plane that has three intersections with the helix such that
one intersection is half-way between the two others. Let y(φ1) and y(φ2) be the
endpoints of the π-line lying on the helix, then Iπ = [φ1,φ2] is the parametric
interval corresponding to the unique π-line passing through e. m(φ,β) is defined
to be a unit normal vector for the plane κ(φ,ψ) with the smallest |ψ| value that
contains the line of direction β, where β(φ, e) = e−y(φ)

||x−y(φ)|| , as the unit vector
pointing from y(φ) to e. Hence, the Katsevich formula can be stated as:

f(e) = − 1
2π2

∫
Iπ(e)

1
||e− y(φ)||

PV
∫ 2π

0

∂

∂q
Df(y(q),α(φ, e, γ))|q=φ

dγdφ

sin γ (2.6)

where PV means that the integral should be interpreted as a principal value in-
tegral, α(φ, e, γ) = cos γβ(φ, e) + sin γ(β(φ, e)×m(φ,β)). (2.6) is the general
reconstruction formula disregarding the detector geometry, and Noo et al. [112]
implemented Katsevich’s formula of direct reconstruction from data measured in
flat detector coordinates, shown as below:

f(e) =
1

2π

∫
Iπ(e)

1
c∗(φ, e)P

F (φ, b∗, a∗)dφ (2.7)
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where

P F (φ, b∗, a∗) =
∫ ∞
−∞

1
π(b∗ − (b∗)′)

D√
(b∗)′2 +D2 + (a∗)′2

P1(φ, (b∗)′, (a∗)′)d(b∗)′

P1(φ, (b∗)′, (a∗)′) = (
∂P (q, (b∗)′, (a∗)′)

∂q

+
((b∗)′)2 +D2

D

∂P (q, (b∗)′, (a∗)′)
∂(b∗)′

+
(b∗)′(a∗)′

D

∂P (q, (b∗)′, (a∗)′)
∂(a∗)′

)|q=φ

The detailed implementation of this algorithm can be found in [155].

The methods mentioned above are quite mature nowadays, and it is possible to
reconstruct an image volume with typical image size in a minute with modern
computer architecture.

2.5 Iterative Reconstruction

2.5.1 Projection Models

The forward projection operator or the CT system matrix, A, defined to transform
the object to a set of line integrals, is the key element in deciding reconstruction
accuracy via iterative methods. It defines (1) how the continuous function of the
object is represented by a finite set of parameters; and (2) how projection data
are calculated from this continuous function. Correspondingly, forward projec-
tion models vary on the choice of the image basis function that describes the
pixel/voxel shapes and the integration function that is related to the acquisition
geometry [97]. Many basis functions have been proposed, such as square ba-
sis function [118, 145], Fourier series, circular harmonics, wavelets, of which the
square basis function is the most popular and common for its simplicity. Another
one that has gained favourable results in CT reconstruction is the Kaiser-Bessel
function, also known as ’blob’. It assumes that non-zero values only exist in a
circular disk around the origin, and smoothly decrease from a positive value at
the origin to zero at the edge of the disk. ’blob’ has been a particularly popular
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choice of rotationally symmetric basis. For the integration functions, there are
also several types, among which the Dirac line is the most common. Its geometry
is shown in Figure 2.10(a), and the sinogram data is gained by the integral along
the line. Other types of integration functions that consist either of several Dirac
lines or a strip (Figure 2.10(b)), can be used for suppressing aliasing in the single
Dirac line type. Hence, a variety of forward projection models can be defined as
a combination of a selected basis function and an appropriate geometrical inte-
gration function. Table 2.1 lists the most popular forward projection methods.
The linear intersection model, which is a variant of ray-driven methods and is
used in the simulations in the present thesis, is described in detail below.

(a) Projection model with Dirac line (b) Projection model with strip ray

Figure 2.10: Projection model with different integration functions. In model
(a), a popular choice of the weight for each pixel is the intersection length.
In model (b), the ray width is usually equal to the pixel width and a popular
choice of the weight for each pixel is the intersection area.

In the CT system, the line integral is known as the Radon transform of the object
f , denoted by:

s(θ, r) =
∫
x

∫
y
f(x, y)δ(x cos θ+ y sin θ− r)dxdy

where (θ, r) is the coordinate of parallel-beam CT, defined in Figure 2.5. As the
Radon transform is continuous both for the object under scan and the projections
themselves, it has to be sampled to adjust to practical applications. Suppose the
object is discretized into n× n small lattices, and the gray-scale value keeps the
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Table 2.1: Selection of the most prominent projection methods and references
to initial or important publications

Projection model Method Reference
Ray-driven methods Trace the ray path at each pro-

jection bin.
[64,137,165,167]

Pixel-driven methods For each image pixel, the cen-
tre of the pixel is projected onto
the detector array along the pro-
jection direction, and a value is
obtained from, or accumulated
in, the detector by (typically lin-
ear) interpolation.

[64,118,167]

Distance-driven methods Map pixel and detector bound-
aries to a common axis and the
coefficients are computed as the
row or slab intersection length
combined with the overlap coef-
ficient (the length of overlap).

[99,100]

same within each lattice. The matrix form of the object is:

f =


f11 f12 . . . f1n

f21 f22 . . . f2n
... ... . . . ...
fn1 fn2 . . . fnn


The projection becomes a so-called ray-sum:

s(θ, r) =
n∑
i=1

n∑
j=1

fijlij

where lij =
∫
x

∫
y δ(xcos(θ) + ysin(θ)− r)dxdy. In the linear intersection model,

as the name implies, it is the intersection length of the X-ray and the lattice at
the ith row and jth column.

For the application of compressed sensing, the reconstructed problem is formu-
lated as:

b = Ax (2.8)
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where x is the column-wise vector of the object f ,

x = [f11 f21 · · · fn1 f12 f22 · · · fn2 · · · f1n f2n · · · fnn]T

b is the projection vector with the size (q× p)× 1, q is the number of the scanning
views and p stands for the number of rays at each view.

b = [ b11 b12 · · · b1p︸ ︷︷ ︸
θ1

b21 b22 · · · b2p︸ ︷︷ ︸
θ2

· · · bq1 bq2 · · · bqp︸ ︷︷ ︸
θq

]T

Obviously, A is of the size (q × p)× n2, which is extremely large. We start the
formulation of A by building the discretized model of parallel-beam CT as in
Figure 2.11.

(a) Parallel-beam scan-
ning

(b) Coordinates

Figure 2.11: Discretized model of parallel-beam CT

A((i− 1)× p+ j, l) denotes the length of the jth ray at the ith angle through
the lth pixel of x. The lth pixel in x corresponds to 4 points in the model of
Figure 2.11(b): (x1, y1), (x1, y2), (x1, y1), (x2, y1), where

x1 =
n

2 − e x2 =
n

2 − e+ 1 y1 =
n

2 − c y2 =
n

2 − c+ 1

e = mod(l,n), c = l− e
n

+ 1.

Now we can calculate the y-coordinates of the intersections of the ray with two
lines x = x1,x = x2 as

 y′1 = r(j) · sin θi − (x1−r(j)·cos θi)
tan θi

y′2 = r(j) · sin θi − (x2−r(j)·cos θi)
tan θi
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and the x-coordinates of the intersections of the ray with two lines y = y1, y = y2

as  x′1 = r(j) · cos θi − tan θi(y1 − r(j) · sin θi)
x′2 = r(j) · cos θi − tan θi(y2 − r(j) · sin θi)

Here r(j) is the the bin coordinate of the jth ray. Hence,

A((i−1)×p+ j, l) =



√
(x1 − x′1)2 + (y1 − y′1)2 if x1 ≤ x′1 ≤ x2 & y1 ≤ y′1 ≤ y2√
(x2 − x′1)2 + (y1 − y′2)2 if x1 ≤ x′1 ≤ x2 & y1 ≤ y′2 ≤ y2√
(x1 − x′2)2 + (y2 − y′1)2 if x1 ≤ x′2 ≤ x2 & y1 ≤ y′1 ≤ y2√
(x2 − x′2)2 + (y2 − y′2)2 if x1 ≤ x′2 ≤ x2 & y1 ≤ y′2 ≤ y2√
(x′1 − x′2)2 + 1 if x1 ≤ x′1 ≤ x2 & x1 ≤ x′2 ≤ x2√
(y′1 − y′2)2 + 1 if y1 ≤ y′1 ≤ y2 & y1 ≤ y′2 ≤ y2

0 else

The discretized model of fan-beam CT is shown in Figure 2.12. Suppose that the
number of rays at each view is p, and the distance from the source to the centre
of the domain O is R.

(a) Fan-beam scanning (b) Coordinates

Figure 2.12: Discretized model of fan-beam CT

When the source is at the ith angle, the y-coordinates of the intersections of the
jth ray with two lines x = x1,x = x2 are

y′1 = R cos βi − x1+R sin βi
tan(βi+γj)

y′2 = R cos βi − x2+R sin βi
tan(βi+γj)

and the x-coordinates of the intersections of the jth ray with two lines y = y1, y =
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y2 are  x′1 = (R cos βi − y1) · tan(βi + γj)−R sin βi
x′2 = (R cos βi − y2) · tan(βi + γj)−R sin βi

Hence

A((i−1)×p+ j, l) =



√
(x1 − x′1)2 + (y1 − y′1)2 if x1 ≤ x′1 ≤ x2 & y1 ≤ y′1 ≤ y2√
(x2 − x′1)2 + (y1 − y′2)2 if x1 ≤ x′1 ≤ x2 & y1 ≤ y′2 ≤ y2√
(x1 − x′2)2 + (y2 − y′1)2 if x1 ≤ x′2 ≤ x2 & y1 ≤ y′1 ≤ y2√
(x2 − x′2)2 + (y2 − y′2)2 if x1 ≤ x′2 ≤ x2 & y1 ≤ y′2 ≤ y2√
(x′1 − x′2)2 + 1 if x1 ≤ x′1 ≤ x2 & x1 ≤ x′2 ≤ x2√
(y′1 − y′2)2 + 1 if y1 ≤ y′1 ≤ y2 & y1 ≤ y′2 ≤ y2

0 else

This concludes the formulation of the linear intersection model for parallel-beam
and fan-beam CT, and it will be used in the simulations in Chapter 5.

2.5.2 Algorithms

Iterative reconstruction methods are entirely different from analytical methods
and conceptually easier, and involve assuming the object contains an array of
unknowns and then setting up algebraic equations for the unknowns in terms of
the measured projection data. The availability of large computational capacities
in normal workstations and the ongoing efforts towards lower doses in CT have
made the iterative reconstruction a hot topic for all major vendors of clinical
CT systems in the past few years. A brief overview of iterative reconstruction
algorithms is presented below.

Suppose A is the CT system matrix, x is the object vector to be reconstructed,
and b is the measured data, one obtains:

Ax = b (2.9)

The algorithms developed to solve (2.9) fall into the first category of iterative
image reconstruction algorithms, referred to as the algebraic reconstruction tech-
nique (ART) [57]. Different constraints can be imposed upon the iterations,
such as positivity constraint, prior information, etc. While the original ART
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works on single rays and thus single pixels, there have been efforts to develop
its variants, aiming at higher efficiency. For example, the simultaneous algebraic
reconstruction technique (SART) [5, 71] is used to perform updates for complete
projections, the ordered subsets (OS) method [101] divides the projections into
subsets and updates each group, and the multiplicative algebraic reconstruction
technique (MART) [7] multiplies the update term onto the current solution in-
stead of adding or subtracting.

The entire process of data acquisition described in (2.9) is modeled as a deter-
ministic process, which cannot account for the intrinsic photon statistics that
introduce noise into the measurements [143]. Hence, the other category of it-
erative image reconstruction algorithms, called the statistical method, utilizes
knowledge of the underlying physics, i.e. the understanding of the statistical dis-
tribution resulting from the X-ray interaction process. The statistical method is
generally formulated as:

minx
1
2(b−Ax)TQ(b−Ax), (2.10)

where Q is the diagonal matrix with ith element of σ2
i , i.e. an estimate of the

variance of noise of line integral at detector bin i. Here σ2
i is calculated using

σ2
i =

eb̄i

Ni0
,

where b̄i is the mean of the noisy sinogram datum bi, and Ni0 is the incident
photon number at detector bin i. This category can be roughly divided into two
groups of methods that are based on the maximum likelihood (ML) principle
and the least squares (LS) principle, respectively [10]. The maximum likelihood
expectation-maximization (ML-EM) algorithm consists of two alternating steps
that compute the expectation of the log-likelihood and find the next estimate
by maximizing the expected log-likelihood. Again, the OS principle is applied
for faster convergence. For the least squares principle, methods based on iter-
ative coordinate descent (ICD) [133, 145] have been proposed and successfully
implemented.

To sum up, iterative reconstruction has several attractive features, although it is
not as computationally efficient as analytical reconstruction. It allows the integra-
tion of various physical models, which can reduce noise and artifacts, depending
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on modelling accuracy. It is also more forgiving of data truncation at a given view
and view truncation as in limited view problems, leading to its biggest advantage,
i.e. its great potential for radiation reduction. Despite all the advantages, there
are some obstacles hindering the promotion of the iterative reconstruction tech-
nique, one of which is that it takes many years for the radiologist to adapt to the
new noise patterns and artifacts. However, Beister points out that "A movement
away from analytical methods in favor of iterative methods can nevertheless be
anticipated for CT in general within the next few years." [10]

2.6 Conclusion

This chapter has introduced the fundamentals of computed tomography. First the
development of CT was reviewed, starting from the invention of CT and followed
by the illustration of different generations of scanners: parallel-beam, fan-beam
and cone-beam. Then the physical theory of CT was described as well as the cause
and appearance of various artifacts. In the following section, we focussed on low-
radiation CT, revealing its benefits and guiding principles, the quantification of
radiation and effective dose-management strategies. Finally, both the analytical
and iterative reconstruction algorithms were depicted in detail, together with
their advantages and disadvantages.
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Chapter 3

Fundamentals of Compressed
Sensing

3.1 Introduction

Sampling is the process of converting a signal, for example, a function of con-
tinuous time or space, into a numeric sequence, a function of discrete time or
space. The intuitive expectation is that when the continuous function is reduced
to discrete samples, one can still recover the original signal through interpolation.
Kotelnikov, Nyquist, Shannon, and Whittaker tackled this problem by proposing
the sampling theorem [86,113,135,153]. Their pioneering work is a fundamental
bridge between continuous signals and discrete signals, and is commonly known
as the Nyquist-Shannon sampling theorem. It states that signals can be exactly
recovered from a set of uniformly spaced samples taken at the Nyquist rate of
twice the bandwidth of the signal of interest. This discovery has moved signal
processing from the analogue to the digital domain, and digitization has enabled
more robust, flexible and cheaper sensing and processing systems than their ana-
logue counterparts [37]. However, with ever-increasing fidelity and resolution, the
resulting Nyquist rate is so high that we have far too many samples, or in some
cases, it is simply beyond the capability of physical devices. In X-ray computed
tomography (CT), for example, the number of measurements required by the
sampling theorem for a successful recovery is usually large and will eventually
cause high dose of radiation. Hence, despite extraordinary advances in computa-
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tional power, the acquisition and processing of signals such as images and videos
continues to call for an even lower sampling rate.

On the other hand, compression techniques have emerged to deal with high-
dimensional data, which aim at finding the most concise representation of a signal
while allowing some acceptable distortion. They rely on the empirical observa-
tion that many types of signals can be well-approximated by a sparse expansion
in terms of a suitable basis, that is, by only a small number of non-zero co-
efficients. Roughly speaking, one compresses the signal by simply keeping the
largest coefficients when the signal is described by a basis or frame, which is
known as transform coding. Many lossy compression techniques such as JPEG,
JPEG2000, MPEG, and MP3 all comply with this principle. Leveraging the con-
cept of transform coding, we are interested in whether there is a way to directly
sense the data in a compressed form, rather than first sampling at a high rate
and then compressing the sampled data.

The emergence of the novel theory of compressed sensing (CS) - also known as
compressed sensing or compressive sampling - provides a satisfactory answer to
the above question. The key feature of CS is to achieve perfect signal recovery
from much fewer measurements than usually required by the Shannon-Nyquist
criterion. CS exploits the sparseness or compressibility of signals in a predefined
basis or frame, and its required number of measurements is proportional to the
number of non-zero elements in the sparse representation of signals [24]. The tech-
nique of CS [63,96] was proposed in 2006 with the publication of papers by Can-
dès, Romberg, Tao [23] and by Donoho [40]. It has been a very active area in both
theory and applications since then. The former group of authors introduced the
restricted isometry property (RIP), which was initially called the uniform uncer-
tainty principle and recognized as a key property of compressed sensing matrices.
It has been proved that Gaussian, Bernoulli, and partial random Fourier matri-
ces [21,124,131] possess this important property and randomness is exploited to
show optimal or at least near-optimal conditions on the number of measurements
in terms of the sparsity. On the other hand, Donoho approaches this problem
via polytope geometry, more precisely, via the notion of k-neighbourliness. He
observes sharp phase transition curves shown for Gaussian random matrices sep-
arating regions where recovery fails or succeeds with high probability [41–43].
The foundation of CS theory lies in probability theory, finite dimensional Banach
space geometry [72,90] and randomly-projected polytopes [4]. Interested readers
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can refer to [51] for a historical overview.

There has been a notable impact of CS on several applications in imaging [46,
129], A/D conversion [147], radar [65] and wireless communication [119, 144],
to name a few. One important area is medical imaging, where it has enabled
speedy magnetic resonance (MR) scanning while preserving diagnostic quality
[148]. Moreover, the broad applicability of this framework has inspired research
that extends the CS framework to CT scanning for radiation reduction, which
is in accordance with the theme of my thesis. The aim of this chapter is to
provide an up-to-date review of some of the important results in CS from both
theoretical and numerical aspects. We start with the introduction of the general
mathematical model and the optimization algorithms in Section 3.2, followed by
the two fundamental conditions, sparsity in Section 3.3 and solution uniqueness in
Section 3.4. Finally, a brief review of the application of CS in CT reconstruction
is given in Section 3.5.

3.2 Mathematical Model

We start with the preliminaries and notation. In what follows, C, R denote the
set of complex numbers and real numbers, respectively. I is the identity matrix,
and || · ||p is the p-norm operator. For a vector object x ∈ CN ,

||x||p := (
N∑
j=1
|xj |p)1/p, 1 ≤ p <∞

||x||0 := |supp x|

||x||∞ := max
j=1,··· ,N

|xj |

where supp x denotes the support of x and | · | stands for the cardinality. x is k-
sparse if ||x||0 ≤ k. Let ∑

k denote the set of k-sparse vectors, inf the infimum or
greatest lower bound of a subset of real numbers. The best k-term approximation
error of a vector x ∈ CN in `p is defined as

σk(x)p = inf
z∈

∑
k

||x− z||p.
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For a matrix A = (aij) ∈ Cm×N , the `2 norm and Frobenius norm is defined as:

||A||2 = σmax(A)

||A||F =
√∑

i

∑
j

|aij |2

where σmax(A) denotes the largest singular value of A. In addition, it is known
that

||A||2 ≤ ||A||F .

For a subset T ⊂ {1, · · · ,N} and its complement Tc = {1, · · · ,N} \ T, xT

stands for the vector that only takes the entries of x in T and sets the entries
0 outside T. Similarly, AT denotes the column sub-matrix of A consisting of
columns indexed by T.

This completes the notation.

Suppose the measurement vector b ∈ Cm of a signal x ∈ CN is obtained via:

Ax = b (3.1)

where A ∈ Cm×N is the measurement/sensing matrix. The main interest is in
the heavily under-sampled case m� N , where it would be impossible to recover
x from b without any further information. However, the additional assumption
that x is k-sparse can change the situation dramatically. It naturally leads to the
`0-minimization problem:

min ||x||0 subject to Ax = b (3.2)

where ||x||0 denotes the `0 norm that counts the number of nonzero entries of
x. Unfortunately, the `0-minimization problem is non-deterministic polynomial-
time (NP) hard [98,105] and therefore computationally intractable. Two practical
alternatives to (3.2) have been proposed: basis pursuit [30] and greedy algorithms
[106].

Basis pursuit algorithms

This group of algorithms relaxes || · ||0 to || · ||1, so the problem is converted
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to convex optimization as in (3.3), for which there exist efficient and accurate
numerical solvers.

min ||x||1 subject to Ax = b (3.3)

where ||x||1 denotes the `1 norm which is the sum of the absolute entries of x. It
may not be immediately clear that the solution to (3.3) will be at all similar to
the solution to (3.2). Therefore Figure 3.1 is given to explain that the use of `1
promotes sparsity.

Figure 3.1: The `1-minimizer within the affine space of solutions of the linear
system Ax = b coincides with a sparsest solution

In the presence of noise, the linear program in (3.3) is relaxed to the convex
program with a conic constraint:

min ||x||1 subject to ||Ax− b||2 ≤ ε

or the unconstrained version:

min τ

2 ||Ax− b||2 + ||x||1

where τ and ε are both parameters, and with appropriate choice, these two prob-
lems are equivalent. There are a great variety of algorithms designed to explicitly
solve these problems in the context of CS [9,50,52,93,115,152,162].

Greedy algorithms

Greedy algorithms rely on iterative approximation of the signal coefficients and
support, either by iteratively identifying the support of the signal until a conver-
gence criterion is met, or alternatively by obtaining an improved estimate of the
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sparse signal at each iteration that attempts to account for the mismatch to the
measured data [37]. Two of the oldest and simplest greedy approaches are orthog-
onal matching pursuit (OMP) [36, 44, 106] and iterative thresholding [15]. OMP
seeks a sparse minimizer one entry at a time. It starts with finding the column
of A most correlated to the measurements, then repeats this step by correlating
the columns with the signal residual, which is obtained by subtracting the contri-
bution of a partial estimate of the signal from the original measurement vector.
Iterative thresholding algorithms are more straightforward, and iterate a gradient
descent step followed by thresholding until a convergence criterion is met. There
have been many efforts to improve upon these basic results [35,39,107,108].

3.3 Sparse and Compressible Signals

The great potential of CS in many applications is on the grounds that a wide
range of real-world signals and images have a sparse or compressible expansion
in terms of a suitable basis or frame, for example a wavelet expansion. We have
introduced the definition of sparse signals in Section 3.2. However, the signal of
practical interest may not be strictly sparse in space or in a transform domain,
but take the form of rapid decay, typically like a power law. Such type of signals
is known as compressible.

We now consider objects whose coefficients on some basis decay like a power-
law [21]. A finite signal x ∈ CN can be described by an orthonormal basis ϕ as
ϕ(x), which can be arranged in decreasing order of magnitude |ϕ|(1) ≥ |ϕ|(2) ≥
· · · ≥ |ϕ|(N). ϕ(x) is said to belong to the weak-`p ball of radius B for some
0 < p <∞ if for each i ∈ [1 N ],

|ϕ|(i) ≤ B · i−1/p. (3.4)

p controls the speed of the decay: the smaller p, the faster the decay. It is well-
known that the decay rate of the coefficients of x is linked to the ’compressibility’
of x. Suppose ϕk(x)(1 ≤ k ≤ N) is obtained by keeping the k largest entries of
the vector ϕ(x) and setting the others to zero. Then it immediately follows from
(3.4) that the approximation error obeys

||ϕ(x)− ϕk(x)||2 ≤ Cp ·B · k−t, t = 1/p− 1/2,
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for some constant Cp only dependent on p. Hence, it follows from Parseval that
the approximate signal xk reconstructed from ϕ(x) obeys the same estimate,

||x− xk||2 ≤ Cp ·B · k−t. (3.5)

CS states if one makes some random measurements of a signal, and then recon-
structs an approximate signal from this limited set of measurements in a manner
which requires no prior knowledge of or assumptions about the signal except that
it obeys power-law decay in some domain, one still obtains a reconstruction er-
ror which is equally as good as that one would obtain by knowing everything
about the signal and selecting the k largest entries of the coefficient vector in
that domain.

3.4 Uniqueness of k-sparse Solutions

To guarantee successful recovery with CS, the condition must be established that
there is only one k-sparse solution to Ax = b. In this section, two fundamental
properties of the measurement matrix are introduced, and the definitions, lemmas
and theorems below are quoted from [51].

3.4.1 Null Space Property

The first property is called the null space property (NSP). The null space of the
measurement matrix is denoted as N (A) = {x : Ax = 0, x ∈ CN} [19].

Definition 3.1. A matrix A ∈ Cm×N satisfies the NSP of order k with constant
α ∈ (0, 1) if

||xT||1 ≤ α||xTc ||1

for all sets T ⊂ {1, · · · ,N}, |T| ≤ k and for all x ∈ N (A).

With this notion, we have the following theorem.

Theorem 3.2. [51] Let A ∈ Cm×N be a matrix that satisfies the NSP of order
k with constant α ∈ (0, 1), x ∈ CN and b = Ax, x∗ be a solution of the `1-
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minimization problem (3.3). Then

||x− x∗||1 ≤
2(1 + α)

1− α σk(x)1.

In particular, if x is k-sparse, x∗ = x.

Proof. Since x∗ is a solution of the `1-minimization problem (3.3), we have:

||x∗||1 ≤ ||x||1.

Let T be the set of the k-largest entries of x in absolute value, then

||x∗T||1 + ||x∗Tc ||1 ≤ ||xT||1 + ||xTc ||1. (3.6)

Let η = x∗ − x, then η ∈ N (A). Because of triangle inequality, which is

||xT||1 − ||ηT||1 ≤ ||x∗T||1, ||ηTc ||1 − ||xTc ||1 ≤ ||x∗Tc ||1

(3.6) becomes:

||xT||1 − ||ηT||1 + ||ηTc||1 − ||xTc ||1 ≤ ||xT||1 + ||xTc||1
||ηTc ||1 ≤ ||ηT||1 + 2||xTc||1 ≤ α||ηTc ||1 + 2σk(x)1

||ηTc ||1 ≤ 2
1−ασk(x)1 (3.7)

Hence,

||x− x∗||1 = ||ηT ||1 + ||ηTc ||1 ≤ (α+ 1)||ηTc||1 ≤
2(1 + α)

1− α σk(x)1

This completes the proof.

3.4.2 Restricted Isometry Property

The second property is called the restricted isometry property (RIP).

Definition 3.3. An m×N matrix A ∈ Cm×N satisfies the RIP of order k if
there is some constant δk ∈ (0, 1) such that

(1− δk)||x||22 ≤ ||Ax||22 ≤ (1 + δk)||x||22 (3.8)
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holds for all k-sparse vectors x ∈ CN . δk here is defined as the restricted isometry
constant.

When δk ∈ (0, 1), A satisfies the RIP of order k with constant δk. The restricted
isometry constant δk can also be equivalently defined as:

δk = max
T⊂{1,··· ,N},|T|≤k

||A∗TAT − I||2

The relationship between RIP and NSP is revealed in the lemma below.

Lemma 3.4. [51] Assume that A ∈ Cm×N satisfies RIP of order K = k + h

with constant δK ∈ (0, 1). Then A has the NSP of order k with constant α =√
k(1+δK )
h(1+δK ) .

Proof. From the assumption, we have:

(1− δK)||x||22 ≤ ||Ax||22 ≤ (1 + δK)||x||22, ∀x ∈ ∑
K (3.9)

Let η ∈ N (A), whose entry indexes are divided to disjoint sets T0, T1, · · · , Tq.
T0 = T ⊂ {1, · · · ,N}, |T | ≤ k, and the size of other sets, i.e. T1, · · · , Tq, is
at most h. In addition, the entries are arranged in a non-increasing order on
T1, · · · , Tq as below:

|ηj | ≤ |ηi| for all j ∈ Tp, i ∈ Tp′ , 0 ≤ p′ ≤ p ≤ q

Note that Aη = 0 implies AηT0∪T1 +
∑q
j=2AηTj

= 0.

Based on the Cauchy-Schwarz inequality, RIP and the triangle inequality, the
following sequence of inequalities is deduced:

||ηT||1 ≤
√
k||ηT||2 ≤

√
k||ηT0∪T1 ||2

from (3.9) ≤
√

k

1− δK
||AηT0∪T1 ||2

=

√
k

1− δK
||AηT2∪T3∪···∪Tq

||2

≤
√

k

1− δK

q∑
j=2
||AηTj

||2
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from (3.9) ≤
√

1 + δK
1− δK

√
k

q∑
j=2
||ηTj

||2

from the non-increasing arrangement ≤
√

1 + δK
1− δK

k

h

q−1∑
j=1
||ηTj

||1

≤
√

1 + δK
1− δK

k

h
||ηTc||1

This concludes the proof.

Taking h = 2k and
√

1+δK
1−δK

k
h < 1 leads to the conclusion that A satisfies the NSP

of order k when δ3k <
1
3 . By Theorem 3.2, the stable recovery of the k-sparse

vector by `1-minimization is guaranteed. It is shown in the following theorem
that RIP also puts a bound on the reconstruction error in `2.

Theorem 3.5. [51] that A ∈ Cm×N satisfies RIP of order 3k with constant
δ3k ≤ 1

3 . For x ∈ CN , let b = Ax and x∗ be the solution of the `1-minimization
problem (3.3). Then

||x− x∗||2 ≤ C
σk(x)1√

k

with C = 2
1−α(

α+1√
2 + α),α =

√
1+δ3k

2(1−δ3k)

Proof. Based on the proof of Lemma 3.4, the similar setting is adopted with
η = x∗ − x ∈ N (A), h = 2k and we have:

||ηT||2 ≤
√

1 + δ3k
2k(1− δ3k)

||ηTc ||1.

Since δ3k ≤ 1
3 makes α < 1, we have:

||ηTc ||2 ≤
√

1
2k ||η||1 =

√
1
2k (||ηT||1 + ||ηTc ||1

from Definition 3.1 ≤
√

1
2k (α||ηTc ||1 + ||ηTc||1 =

α+ 1√
2k
||ηTc||1

Finally,

||x− x∗||2 ≤ ||ηT||2 + ||ηTc ||2

≤ (
α+ 1√

2
+ α)

||ηTc||1√
k
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from (3.7) ≤ 2
1− α(

α+ 1√
2

+ α)
σk(x)1√

k

This completes the proof.

Although the RIP itself is no easier to verify than the null space property, its
advantage is the fact that it can be shown to hold with high probability for large
classes of matrices generated by certain random procedures, such as Gaussian,
Bernoulli and partial Fourier random matrices.

3.4.3 RIP for Special Types of Random Matrices

Optimal estimates for the RIP constants of measurement matrices in terms of
the sample number m can be obtained for Gaussian, Bernoulli or more general
sub-Gaussian random matrices. The entries of Gaussian matrices are i.i.d. Gaus-
sian random variables with expectation 0 and variance 1/m, and the entries of
Bernoulli matrices take the value 1/

√
m or −1/

√
m with equal probability. Both

satisfy the concentration inequality:

P (|||Ax||22 − ||x||22| ≥ δ||x||22) ≤ 2e−c0δ
2m, δ ∈ (0, 1), (3.10)

with c0 > 0 is some constant. Correspondingly, their RIP is based on this in-
equality.

Theorem 3.6. [51] Let A ∈ Rm×N be a random matrix satisfying the concen-
tration property (3.10), there exists a constant C depending only on c0 such that
the restricted isometry constant of A satisfies δk ≤ δ with probability at least 1− ε
provided

m ≥ Cδ−2(k log(N/M) + log(ε−1)), ε ∈ (0, 1).

Random partial Fourier matrix is another important class regarding the applica-
tion of CS. Compared with Gaussian and Bernoulli matrix, it tends to be more
justifiable in practice, as well as more efficient, due to the availability of speedy
matrix-vector multiplication via fast Fourier transform (FFT). It was also the
study object of the very first papers on CS [21, 23]. A random partial Fourier
matrix A ∈ Cm×N is obtained from the discrete Fourier matrix F ∈ CN×N with
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entries
Fp,q =

1√
N
e−j2πpq/N , p, q = 0, 1, · · · ,N − 1

by selecting m rows uniformly at random among the full N rows.

To start with, we present two examples in Figure 3.2 and Figure 3.3 for some
intuitive understanding. The Fourier coefficients of the signal samples gained
via different ways are plotted. It is noticed that when the sampling ratio is
lower than that required by the Nyquist-Shannon theorem, random sampling
in time/space domain is able to preserve the frequency information better than
uniform sampling.

The following theorem concerning the RIP of random partial Fourier matrices is
proven in [125], and is improved slightly in [21,124,131].

Theorem 3.7. Let A ∈ Cm×N be the random partial Fourier matrix, the re-
stricted isometry constant of the rescaled matrix

√
N
mA satisfies δk ≤ δ with prob-

ability exceeding 1−N−α log3(N) provided

m ≥ Cδ−2k log4(N)

where C,α > 1 are universal constants.

3.5 CS-based CT reconstruction

CS theory has been exploited in many applications since it was born, among which
medical imaging is a key area. The mathematical framework of CS is elegant and
compatible with the CT iterative reconstruction technique, formulated as:

min ||ϕx||1 s.t. Ax = b (3.11)

where x is the object to be reconstructed, A is the CT system matrix, or the
projection operator that converts the object to projections, b is the measurement,
and ϕ is the sparsifying basis. One may view it as simply another plain iterative
algorithm, but the publication of CS has caused a dramatic revitalization in the
image reconstruction community [143]. What makes the CS theory so important
is that it addresses the sampling condition for accurate reconstruction of an image
object, to be specific, the sparse property and the RIP.
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(a) Original signal (b) Fourier transform of the original signal

(c) Fast regular sampling that satisfies
Nyquist-Shannon theorem

(d) Fourier transform of the samples gained
via fast regular sampling

(e) Slow regular sampling (f) Fourier transform of the samples gained
via slow regular sampling

(g) Random sampling (h) Fourier transform of the random sam-
ples

Figure 3.2: Comparison of Fourier coefficients of 1-D signal samples gained
via different sampling patterns
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(a) Dense uniform
samples

(b) Fourier transform of dense uniform samples

(c) Sparse uniform
samples

(d) Fourier transform of sparse uniform samples

(e) Sparse random
samples

(f) Fourier transform of sparse random samples

Figure 3.3: Comparison of Fourier coefficients of 2-D image samples gained
via different sampling patterns

Here we review briefly the application of CS in CT reconstruction. Sidky and
Pan et al. started to apply CS to CT reconstruction in 2006 [139], using total
variation(TV) minimization and incomplete projection data. This model has
been particularly useful and has been adapted by many researchers since then
[13, 33, 128, 128, 140, 141, 143, 163]. The main innovations concern three aspects:
(1) computationally efficient parallel programming with appropriate hardware
and (2) mathematical formulation of an efficient optimization algorithm for fast
convergence and (3) incorporation of other constraints for higher reconstruction
accuracy. The first issue is due to the iterative nature in solving the model; in
general, since it requires multiple iterations of forward and backward projections
of large datasets, it cannot be completed in a clinically feasible time frame (e.g.,
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<1 min). The problem is resolved successfully with the use of graphics processing
units (GPUs) [69, 70], which can reduce the computational time from several
hours to a few minutes. For the second issue, a wide range of algorithms has
been exploited, including Newton’s method, augmented Lagrangian method [91],
split Bregman method [56], Barzilai-Borwein formulation [116], etc. The third
issue involves other constraints, e.g. minimization of the `1 norm of the signal
in wavelet domain [68], or formulating the CS method in the framework of a
different model, e.g. statistical reconstruction [143].

A natural and important extension of the TV-based method is referred to as
the prior image constrained compressed sensing (PICCS) proposed by Chen et
al. [29]. They exploit the application of CS in dynamic CT imaging. A prior
image xp reconstructed from the union of interleaved dynamical data sets is uti-
lized to sparsify dynamic CT image sequences, which is favourable for CS image
reconstruction for individual time frames. Let ϕ1 and ϕ2 denote the sparsifying
transform, α the parameter. The reconstruction problem is formulated as:

min α||ϕ1(x− xp)||1 + (1− α)||ϕ2x||1 s.t. Ax = b (3.12)

The shortcoming of PICCS is that it assumes that the prior images and the
current images are taken at the same global geometrical coordinates, and the
pixels with the same attenuation values correspond to the same scanning data
[109]. This assumption, however, does not necessarily translate into practical
situation due to inevitable error and noise. Various alternative methods of PICCS
have been proposed in the use of different prior knowledge, such as image intensity
histograms [123] and image features [154].

3.6 Conclusion

In this chapter, we have laid the foundation of compressed sensing. To begin
with, we made the problem statement and gave the associated two main solvers:
basis pursuit and greedy algorithms. Then the two key elements of CS theorem
were described in detail: sparse/compressible signals and the RIP of the sensing
matrix. These two work together to guarantee the uniqueness of the solution.
RIP for random Fourier matrix was specifically mentioned as it is related closely
to the CT system, as will be shown in the next chapter. Finally, we presented
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the application of CS in CT, highlighting TV regularization and PICSS.
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Chapter 4

Analysis of Sampling Schemes in
CT Scans

4.1 Introduction

As introduced in Chapter 2, the significant clinical benefits of computed tomog-
raphy (CT) in health care were immediately recognized following its introduction
into clinical practice in 1972, when Sir Godfrey Hounseld at EMI patented the
first CT scanner. Since it was invented, this imaging technology has seen exten-
sive growth in the number of CT scanners and the frequency of CT examina-
tions. The credit for its popularity depends on its capability of providing a wide
coverage of the area of interest in a short time, and its high spatial resolution
and ease of operation. Hence, as a popular and useful medical tool, CT plays an
important role in diagnosis and thus benefits patients greatly. However, CT scan-
ning contributes over 44% to the total collective effective dose equivalent from
global medical exposures. It is known that X-ray radiation leads to ionization
of body cells and increased radiation dose raises the risk of cancer, which makes
the reduction of X-ray radiation dose delivered to patients no trivial task. Of
the various radiation management strategies, to under-sample the projections is
quite straightforward as the under-sampling factor implies the same reduction of
potential radiation dose. We describe different sampling schemes in this chapter,
and investigate their impacts on the Fourier slice theorem (FST)-based projection
model.

48



Chapter 4. Analysis of Sampling Schemes in CT Scans

The rest of the chapter is organized as follows. Section 4.2 introduces different
sampling schemes in fan-beam CT. Then the projection model based on FST is
built in Section 4.3 and verified by simulations in Section 4.5. The analysis of
the impacts of different schemes on the projection model is made in Section 4.4.
Finally, conclusions are drawn in Section 4.6.

4.2 Sampling Schemes

The acquisition of ordinary fan-beam CT is illustrated in Figure 4.1, and the pro-
jection data is measured from 1000− 2000 X-ray source positions uniformly dis-
tributed over the angular range [0 2π). For the mathematical analysis through-
out Chapters 3 and 4, we refer to the scanning data with 2n views and 2n detectors
as the full data for a n× n object, as proposed in [73] .

Figure 4.1: Schematic illustration of data acquisition in ordinary CT

In order to take fewer projections, one possible and popular approach is the
sparse-view sampling scheme [3,13,62], which was applied earlier in CT perfusion
of brains to see the temporal changes in the images. Besides radiation reduction,
the use of fewer projection views can also shorten imaging time in CT scanning,
improve work flow and minimize potential motion artifacts. The principle of
sparse-view CT is shown in Figure 4.2, in which the number of projection views
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is reduced to less than 100, as determined by the application and the required
image quality. The challenging part of this scheme lies in its requirement for
a fast on-off switching of the tube power, but even that development may not
be far off due to the continuous efforts of manufacturers. Depending on the
distribution of the X-ray source, there are two possible schemes: golden-angle
and random-angle. As the name suggests, the entries of locations are distributed
either uniformly or randomly over the angular range [0 2π). In the golden-angle
scheme [26], radial projections are successively incremented by the golden angle√

5−1
2 · 180o ≈ 111.25o, which can generate the sets of projections with relatively

uniform angular spacings, regardless of the number of radial projections in the
set.

Figure 4.2: Schematic illustration of data acquisition in sparse-view CT

The other realization is the sparse-detector sampling scheme proposed by Cho and
Lee et al. [2,32], which uses an oscillating multi-slit collimator between the X-ray
source and the patient, as shown in Figure 4.3. Here the collimator during a scan
can be reciprocated. This efficiently reduces the radiation dose to the patient
by substantially blocking the radiation. Similar to sparse-view CT, the distribu-
tion of detectors can also be uniform or random, known as regular-detector and
random-detector sampling schemes, respectively. To increase the incoherence of
the scanning scheme, the collimator is reciprocated to achieve different detector
distributions at every view in the random-detector sampling scheme.
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Figure 4.3: Schematic illustration of data acquisition in sparse-detector CT

Using the same setting as in Figure 2.8 and suppose the scanning comes with q
views and p detectors, we can express the four sampling schemes mathematically.
In sparse-view scheme, the source location [xs ys] is denoted by:

[xs ys] = [R cos β R sin β]δ(β − β0)

with β0 = mod {[1, 2, · · · , q] · 111.25o, 360o} for the golden-angle scheme,
and β0 are q uniformly distributed random variables from [0 360o)
for the random-angle scheme.

In sparse-detector scheme, the detector distribution within a fan is denoted by
δ(γ − γ0), with

γ0 =
2γm
p− 1 [

1− p
2 , 1− p

2 + 1, · · · , 0, · · · , p− 1
2 − 1, p− 1

2 ]

for the regular-detector scheme, and γ0 are p uniformly distributed random vari-
ables from [−γm γm] for the random-detector scheme.

To sum up, we have two main types of under-sampling: sparse-view and sparse-
detector. Each type has two realizations, leading to four specific schemes: golden-

51



Chapter 4. Analysis of Sampling Schemes in CT Scans

angle and random-angle, and regular-detector and random-detector. In the next
sections, we build the projection model and see how these four schemes affect the
model.

4.3 Projection Model Based on Fourier Slice The-
orem

4.3.1 Relationship between Different Fourier Transforms

The derivation details of Fourier slice theorem are revealed in Section 2.4.1. FST
holds in the continuous-time domain, but the calculation in practice is carried out
in the discrete-time domain. This gives rise to the need to study the relationship
between different Fourier transforms [161].

The continuous-time Fourier transform (CTFT) is defined by the following pair
of equations:

Gc(Ω) =
∫ ∞
−∞

gc(t)e
−jΩtdt

gc(t) =
1

2π

∫ ∞
−∞

Gc(Ω)ejΩtdΩ

where gc(t) is the continuous-time signal and Gc(Ω) is its CTFT.

The discrete-time Fourier transform (DTFT) is defined by:

Gd(w) =
∞∑

l=−∞
gd[l]e

−jwl

gd[l] =
1

2π

∫ π

−π
X(w)ejwldw

where gd[l] is the discrete-time version of gc(t), i.e. gd[l] = gc(lT ) with T as the
sampling period, and Gd(w) is its DTFT.

As a bridge between gd[l] and gc(t), we consider a continuous-time signal that is
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equivalent to gd[l] and is the sampled version of gc(t):

g(t) = gc(t)
∞∑

l=−∞
δ(t− lT )

The CTFT of g(t) is:

G(Ω) =
∫ ∞
−∞

g(t)e−jΩtdt =
∫ ∞
−∞

gc(t)
∞∑

l=−∞
δ(t− lT )e−jΩtdt

=
∞∑

l=−∞

∫ ∞
−∞

gc(t)e
−jΩtδ(t− lT )dt =

∞∑
l=−∞

gc(lT )e
−jΩlT

=
∞∑

l=−∞
gd[l]e

−jwl|w=ΩT = Gd(w) (4.1)

On the other hand, the relationship between G(Ω) and Gc(Ω) can be revealed
based on the product property of CTFT:

G(Ω) =
1
T

∞∑
q=−∞

Gc(Ω +
2πq
T

) (4.2)

With the above (4.1) and (4.2), we find the relationship between Gc(Ω) and
Gd(w):

Gd(w) =
1
T

∞∑
q=−∞

Gc(
w

T
+

2πq
T

) (4.3)

In other words, the DTFT is simply the scaled sum of shifted versions of the
original CTFT.

The DTFT is computationally advantageous over CTFT, but is still not conve-
nient since it is continuous in the frequency domain and thus requires an integra-
tion for inverse DTFT. That is why DTFT is sampled in the frequency domain
to make the discrete Fourier transform (DFT), which is defined as:

G[h] =
N−1∑
l=0

g[l]e
−j2πhl
N , h = 0, 1, · · · ,N − 1

g[l] =
1
N

N−1∑
l=0

G[h]e
j2πhl
N , l = 0, 1, · · · ,N − 1

Generally, if gd[l] is nonzero only over a finite domain, G[h] equals Gd(w) at
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equally spaced intervals of w:

G[h] = Gd(2πh/N), h = 0, 1, · · · ,N − 1

Increasing the DFT size N , e.g. by zero-padding, helps the DFT spectrum to
become closer to the DTFT spectrum because more DTFT samples are obtained.
This is known as the zero padding theorem, that zero padding in the time domain
corresponds to ideal interpolation in the frequency domain.

Figure 4.4 illustrates the relationship between CTFT, DTFT and DFT.

Figure 4.4: Plot of CTFT Gc(Ω) and DTFT Gd(w) where w0 = Ω0T with
T as the sampling period, and the dots correspond to the DFT samples.

4.3.2 Formulation of Forward Projection for Parallel-beam
CT

Suppose the sampling interval of the sinogram and the object is T1 and T2, re-
spectively. CTFT and DTFT of the sinogram is Ŝc and Ŝd and that of the
object is F̂c and F̂d. According to FST, we have Ŝc(ρ) = F̂c(ρ cos θ, ρ sin θ),
where ρ is the frequency index of the sinogram. According to (4.3), we obtain
T1Ŝd(ρ) = T2F̂d(

T2
T1
ρ cos θ, T2

T1
ρ sin θ). Assuming the image is of size n× n, ROI

is a circle of diameter n and the sinogram is obtained at q angular locations with
p detectors, then the 1-D DFT of the full projection at each view corresponds to
Ŝd at locations

ρ =
2πh
p

,h = 0, 1, · · · , p− 1

while in the Fourier domain of the image, it corresponds to F̂d at locations:

(uθ =
2πT2h cos θ

T1p
, vθ =

2πT2h sin θ
T1p

),h = 0, 1, · · · , p− 1
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which can hardly be mapped to an exact 2-D rectangular discrete system. Since
the DFT of a n × n image defines a coarse Fourier space at u, v = 2πl

n , l =

0, 1, · · · ,n − 1, it is natural to pad the image with 0 to a fairly big size, as
shown in Figure 4.5, so that a finer frequency resolution can be obtained and the
coefficients at (uθ, vθ) can be put in this spectral structure with high accuracy.

Figure 4.5: The left image is the original phantom, and the right image is
after zero padding

Here we analyse the interpolation error. For simplicity, assume p = n, so that
T1 = T2. Suppose the image is padded to M ×M and M = Zp. Because the
DTFT of the image is twice continuously differentiable, its linear approximation
is obtained:

F̂d(uθ, vθ) ≈ F̂d(ũ, ṽ) + ∂F̂d
∂u

(ũ, ṽ)(ũ− uθ) +
∂F̂d
∂v

(ũ, ṽ)(ṽ− vθ)

where uθ = 2πh cos θ
p , vθ = 2πh sin θ

p , ũ = 2πa
pZ , ṽ = 2πb

pZ ,h = 0, 1, · · · , p− 1, a, b =

0, 1, · · · , pZ − 1. Note that h cos θ is approximated by a
Z and h sin θ by b

Z .

Since F̂d(u, v) = ∑
x

∑
y f(x, y)e−j(ux+vy), then

F̂d(uθ, vθ) ≈ F̂d(ũ, ṽ) +
∑
x

∑
y
f(x, y)xe−j(ũx+ṽy+

π
2 )(ũ− uθ)

+
∑
x

∑
y
f(x, y)ye−j(ũx+ṽy+

π
2 )(ṽ− vθ).
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Therefore the interpolation error is:

Err =
∑
x

∑
y
f(x, y)xe−j(ũx+ṽy+

π
2 )

2π
p
(
a

Z
− h cos θ)

+
∑
x

∑
y
f(x, y)ye−j(ũx+ṽy+

π
2 )

2π
p
(
b

Z
− h sin θ)

=
∑
x

∑
y
f(x, y)e−j(ũx+ṽy)e−j

π
2

2π
p
[x(

a

Z
− h cos θ) + y(

b

Z
− h sin θ)]

Hence, Err = F̂d(ũ, ṽ)O( 1
Z ), where O is the big O notation and means that the

error decreases proportionally to the padding size.

At this stage we can break the forward projection down into the following steps:

1. Pad the n× n image to M ×M .

2. Apply 2-D DFT and the fine spectral structure of the image is defined at
u, v = 2πl

M , l = 0, 1, · · · ,M − 1.

3. Pick the Fourier coefficients at (uθ, vθ) via nearest interpolation.

4. Apply 1-D inverse DFT to the Fourier coefficients of each view and ob-
tain the sinogram of length p. Under-sample the projections at each angle
according to the practical situation.

The matrix form of the forward projection can be expressed as:

P1F

−1
1
P2F

−1
1

. . .
PqF−1

1

PF2x = b (4.4)

where x is the column-wise vector of the object, and b is the projection vector.
F−1

1 is the inverse 1-D Fourier matrix of size p× p and P1,P2, · · · ,Pq denote the
detector sampling at each views, i.e. to select partial rows from each F−1

1 . It
is simply a subset of pj(j = 1, 2, · · · , q) rows of the p× p identity matrix, and
pj is the detector number at angular position θj . P is to pick the coefficients
at (uθ, vθ), which is also a subset of p× q rows of the identity matrix of size
M ×M . F2 denotes the 2-D Fourier transform of the M ×M image, sampled
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at column due to the zero-padding, so its size is M2 × n2. The accuracy of the
model in (4.4) is verified in the simulation section, where it is shown to produce
comparable sinograms to the Matlab built-in model and the linear intersection
model.

4.4 Sampling Schemes Reflected in the Model

4.4.1 Rebinning from Fan-beam CT to Parallel-beam CT

The projection model (4.4) reflects well the under-sampling schemes for parallel-
beam CT, with the detector r sampling corresponding to P1,P2, · · · ,Pq and the
angle θ sampling corresponding to P .

Since our focus here is to study the effect of different down-sampling schemes on
compressed sensing-based reconstruction in fan-beam CT, it is necessary to rebin
the fan-beam CT projections to parallel-beam CT. The data acquisition geometry
[38] is illustrated in Figure 4.6. It shows that the X-ray source travels along a
circular trajectory, denoted by a(β) = (R cos β,R sin β)T , where β ∈ [0, 2π) is
the rotation angle, R is the distance between the source and the rotation axis,
and the superscript T stands for the transpose operator. The curved detector
array lies on a circle of radius D centred at the source. Any ray in the fan beam
is specified by an angle γ ∈ [−γm, γm] that increases in the clockwise direction.
The definition of γm is as follows. Assuming the object is compactly supported
in a centred circular field of view (FOV), the value of |γ| for each of the two rays
tangent to the FOV is denoted by γm.

The relation between the independent variables of the fan-beam projections and
parallel projections is

r = R sin γ and θ = β + γ, (4.5)

and it is plotted in Figure 4.7 when β covers over 180◦. Because of the periodic
property of parallel projections, the regions labeled A are equivalent, with the
upper part for θ > 180◦, r > 0 and the lower part for θ < 0◦, r < 0. On the other
hand, the regions marked B are areas in the parallel-projection space where no
measurements are taken in fan-beam CT. Hence, in order to cover the full parallel
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Figure 4.6: Fan-beam acquisition geometry with a curved detector

projections , β ∈ [−γm, 180◦ + γm).

Figure 4.7: Fan-beam projections collected at β ∈ [0◦ 180◦] give estimates
of the parallel projections between the curved lines.
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4.4.2 Models under Different Sampling Schemes

As the projection model for parallel-beam CT is formulated as

P1F

−1
1
P2F

−1
1

. . .
PqF−1

1

PF2x = b,

suppose A1 =


P1F

−1
1
P2F

−1
1

. . .
PqF−1

1

 and A2 = PF2, first we inves-

tigate what A1,A2 are like under the full sampling of fan-beam CT, i.e. when
the scanning comes with 2n samples in both the view and bin direction. Suppose
the step of β and γ is denoted by ∆β and ∆γ , we have

∵ Nviews = Nbins = 2n
∴ ∆γ = 2γm/(2n− 1), ∆β = (180 + 2γm)/(2n− 1)
∴ ∆β = (90/γm + 1)∆γ

If the X-ray source is placed at R = 2n away from the centre, which is a popular
and reasonable setting, we obtain γm ≈ 18◦, then ∆β = 6∆γ , as illustrated in
Figure 4.8. The grid intersections denote the measured fan projections. For the
ease of the analysis of the sampling schemes, it is assumed that the rebinned pro-
jections are obtained at θ with the increment ∆β. The desired parallel projections
are shown in blue in Figure 4.8 and each line stands for the same θ, from 0◦ at
the bottom to 180◦ at the top. Hence, the 2n× 2n fan projections are converted
to parallel projections on 5

3n+
1
6 views and 2n detectors at each view.

Based on the rebinning analysis above, for the full scanning of fan-beam CT, A1

is the block diagonal matrix composed of 5
3n+ 1

6 1D inverse Fourier transform
matrices, each of size 2n× 2n. This makes the size of A1 (2n(5

3n+
1
6))

2. Since
there is no under-sampling, P1,P2, · · · ,Pq are all identity matrices. The function
of A2 is to pick the Fourier coefficients lying on 5

3n+
1
6 angles of the zero-padded

n× n images, therefore A2 is of the size 2n(5
3n+ 1

6)× n
2. The 2-D pattern is

shown in Figure 4.9. It is a full-column-rank matrix.
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Figure 4.8: Relationship between parallel and fan projections when ∆β = 6∆γ

Figure 4.9: Sampling pattern of A2

Next we consider how the detector and angle sampling in fan-beam CT affects the
model. As (4.5) reveals that r is an injective function of γ, the sampling pattern
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reflects directly on P1,P2, · · · ,Pq in detector sampling. For regular-detector and
random-detector schemes, P1,P2, · · · ,Pq present a uniform distribution as in
Figure 4.10 (a) and a random distribution as in Figure 4.10 (b), respectively.

(a) regular-detector scheme

(b) random-detector scheme

Figure 4.10: Different detector-sampling schemes

On the other hand, as the projections at the same β affect 5-6 projections at the
same θ, angle sampling would cause cluster distribution on each view, shown in
Figure 4.11. In the golden-angle scheme, every θ is sampled by a similar ratio;
while the random-angle scheme will create heavy sampling at some θ and light
sampling at other θ.

In summary, the four schemes only affect A1 and the A2 maintains the full-
column-rank status as in the full sampling case. How A1 behaves is listed in
Table 4.1.
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(a) golden-angle scheme

(b) random-angle scheme

Figure 4.11: Different angle-sampling schemes

Table 4.1: Effects of sampling patterns on the model

sampling schemes pattern of P1,P2, · · · ,Pq

regular-detector scheme same uniform sampling at every view

random-detector scheme different random sampling at every view

golden-angle scheme different uniform cluster sampling at every view

random-angle scheme different random cluster sampling at every view

4.5 Simulation

The sinogram of several different images is obtained by three different models:
the Matlab built-in model (using pixel-driven methods), linear intersection model
(using ray-driven methods) and the FST-based model formulated in this chap-
ter. In the first model, the algorithm first divides pixels in the image into four
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subpixels and projects each subpixel separately, as shown in Figure 4.12. Each
subpixel’s contribution is proportionally split into the two nearest bins, accord-
ing to the distance between the projected location and the bin centres. If the
subpixel projection hits the centre point of a bin, the bin on the axes gains the
full value of the subpixel, or one-fourth the value of the pixel. If the subpixel
projection hits the border between two bins, the subpixel value is split evenly
between the bins. In the linear intersection model, the CT system matrix is com-
posed of the intersection length of the X-ray and the image lattices, as described
in Section 2.5.1. Four images are selected in Figure 4.13 and Figure 4.14 to show
that the FST-based model can obtain comparable results with the current two
most popular models.

Figure 4.12: Matlab built-in model

4.6 Conclusion

In this chapter, we have analysed the sampling schemes in CT. First, the full scan-
ning fan-beam CT was illustrated, followed by the introduction of the sparse-view
and sparse-detector CT, leading to four specific sampling schemes: golden-angle
and random-angle, and regular-detector and random-detector. Next we built the
projection model of parallel-beam CT based on the preliminary knowledge of FST
and the relation between different Fourier transforms, and error analysis of the
model showed that the error becomes negligible when the padding size is suffi-
ciently large. In the following section, we bridged the gap between the model and
fan-beam CT by revealing the rebinning relationship between fan-beam CT and
parallel-beam CT, and depicted in detail what the model is like for full-scanning,
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sparse-view and sparse-detector fan-beam CT, respectively. Finally, a simple sim-
ulation was run to validate the accuracy of the model compared to the Matlab
built-in model and the linear intersection model.
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(a) phantom1

(b) phantom2

Figure 4.13: Sinogram of phantoms obtained by different models 65
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(a) CT1

(b) CT2

Figure 4.14: Sinogram of CT images obtained by different models 66



Chapter 5

Analysis of Compressed
Sensing-Based CT
Reconstruction with Low
Radiation

5.1 Introduction

As a popular and useful medical tool, X-ray computed tomography (CT) plays
an important role in diagnosis and thus benefits patients greatly. In general, the
image quality of CT is proportional to the radiation dose. However, it is known
that X-ray radiation leads to ionization of body cells and increased radiation dose
raises the risk of cancer. Therefore, reduction of the X-ray radiation dose to pa-
tients while preserving the imaging quality has been a significant and challenging
problem in CT development.

Conventional CT acquires projection data over a number of view angles and uses
filtered back-projection (FBP) [168] for reconstruction. The number of X-ray
projections and data acquisitions for satisfactory image reconstruction is deter-
mined by the well known Shannon-Nyquist sampling theorem. Recently, iterative
reconstruction techniques (IRT) [142,158,169] have been shown to be capable of
reconstructing the image using far few data samples. Specifically, compressed
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sensing (CS) technology has been demonstrated to be a powerful technology for
recovering signals from incomplete measurements through optimization methods
and has been applied to many applications. A number of CS-based techniques
have been applied to CT reconstruction problems subject to under-sampled or
noisy data [29, 70, 139, 140]. The key ideas are that CT images can be sparsely
represented by some linear transformation and penalizing the norm of the image
in the sparsified domain can enable recovery of the unknown image from highly
under-sampled data. The application of CS provides great benefits in radiation
reduction, and therefore has become one of the central topics in medical imag-
ing [61,68].

The existing studies of CT and CS can be roughly divided into two classes. One
class is devoted to reconstruction accuracy through different optimization con-
ditions and algorithms [14, 61, 68, 88, 89], the other is devoted to reconstruction
speed and data storage [70, 110, 116] as CT, especially 3-D CT, requires a large
system matrix. What is seldom discussed, as mentioned in [73], is that the theo-
retical results from CS do not extend to the CT setting. There is a fundamental
lack of understanding about which type of under-sampling is favourable for post
CS reconstruction. The reason is that CS requires the sampling matrix in the
sparsifying domain to meet the restricted isometry property (RIP), which cannot
be tested by any known polynomial-time algorithm. In other words, it is the key
challenge to achieve incoherence in designing CT data acquisition methods for
successful CS reconstruction [76]. Sidky et al. [138] try to tackle the restricted
isometry properties of the Radon transform. Firstly they solve the problem that
isometry constants are not invariant to scalings of the system matrix, followed by
the design of a numerical strategy for determining a lower bound on the RIP con-
stant of a CT matrix for a 5122-pixel image. Because Radon transform has the
greatest difficulty in distinguishing neighbouring pixels, the search of isometry
constants involves only neighbouring pixels. The proposed strategy on one hand
requires intensive computation, and on the other hand is not very practical, as
the lower bound is already approaching 1 at sparsity of 100. Jørgensen, Sidky and
Pan [73] develop quantitative notions for under-sampling based on the condition
number of the system matrix, which addresses only invertibility and stability.
Lustig, Donoho and Pauly [94] use the maximum of the sidelobe-to-peak ratio
of the point spread function (PSF) to measure the incoherence. In this chapter,
we select the system matrix class for a 2-D circular fan-beam geometry using
a square-pixel array and investigate the property of the under-sampled system
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matrix in light of RIP with two tools: PSF and the Fourier slice theorem (FST).
The main contribution here is to provide understanding of CS-based CT image
reconstruction and guidelines for the design of low radiation CT scanning and
reconstruction.

The rest of the chapter is organized as follows. Section 5.2 gives a brief intro-
duction to fan-beam CT data acquisition, and the CS-based framework for CT
reconstruction. Different sampling schemes and the analysis of their impacts on
reconstruction are presented in Section 5.3. The specified optimization algorithm
TVAL3 is described in Section 5.4. In Section 5.5, the experimental results show
consistency with the theoretical analysis and the index proposed is more sensitive
than that in [94]. Conclusions are drawn in Section 5.6.

5.2 Background

5.2.1 Fan-beam Computed Tomography

The main part of a typical CT scanner is a doughnut-shaped gantry that consists
of a set of X-ray sources and detectors on opposite sides. The sources emit X-rays
that are attenuated when passing through the object and then detected at the
detectors, from which an intensity map of the transmission coefficients at various
points in the object can be reconstructed. There are different configurations of
X-ray sources and detectors, from the early generation of parallel-beam scan to
the currently popular cone-beam spiral scan. In this chapter, we take fan-beam
projections for simplicity and the results can be extended to other configurations.
The basic configuration of fan-beam CT is as follows: a point source of radiation
emanates a fan-shaped beam, and on the other side of the object a bank of
detectors acquires all the measurements in one fan simultaneously. The source
and the entire bank of detectors are rotated to generate the desired number of
fan projections. The data acquisition geometry is the same as in the previous
chapter, illustrated in Figure 4.6.
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5.2.2 Regularized Optimization for CS-based CT Recon-
struction

Compressed sensing [130] is an emerging technology which can achieve perfect
signal recovery from much fewer measurements than usually required by the
Shannon-Nyquist criterion. It exploits the sparseness or compressibility of sig-
nals in a predefined basis/frame and its required number of measurements is
proportional to the number of non-zero elements in the sparse representation of
signals [24]. The CS-based CT reconstruction problem can be formulated as:

min ||ϕx||1 s.t. Ax = b (5.1)

where ϕ is the sparsifying transform, x is the column-wise vector of the object, b
is the projection vector and A is the system matrix based on the linear intersection
model. When the observation is noisy, the object can be reconstructed through:

min ||ϕx||1 +
τ

2 ||Ax− b||22 (5.2)

where τ > 0 is the penalty parameter. The first part in the objective func-
tion is the regularization term and the second is often referred to as the fidelity
term to ensure data consistency. ϕ is dependent on image property, and cur-
rently total variation (TV) regularization [132] is a popular choice. TV reg-
ularization succeeds when the gradient of the underlying image is sparse, i.e.
the image possesses piecewise constant property. However, the properties of non-
differentiability and non-linearity of TV functions make the problem solving more
challenging computationally than `1 minimization models. Here the optimization
algorithm TVAL3 [91] is adopted, which is favourable in terms of reconstruction
quality and speed. With the input of the sampling matrix A and the measure-
ments b, it approximately minimizes the augmented Lagrangian function by an
alternating direction scheme and updates multipliers until the reconstruction er-
ror is sufficiently small. The details are described in Section 5.4.
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5.3 Impacts of Sampling Schemes on CS-based
Reconstruction

Specific sampling schemes for the purpose of radiation reduction have been dis-
cussed in Chapter 4. In this section, their impact on CS-based reconstruction is
investigated with reference to the optimal low-radiation CT system design. The
study is carried out from two aspects. One is based on the point spread function
(PSF) of the system matrix, and the other is to analyze the sampling patterns of
Fourier matrix, which relates closely to the system matrix presented in Chapter
4.

5.3.1 Index Based on PSF

RIP claims that if δ2k ≤
√

2 − 1, we can find a unique k-sparse solution for
b = Ax. There is currently no known polynomial-time algorithm to test whether
a given matrix satisfies the RIP. Hence, an index is developed in this section as
the indication of the isometry constant.

Theorem 5.1. The isometry constant δk of A ∈ Cm×N with normalized columns
possesses the following property:

δk = max
K⊂[N ],|K|≤k

||A∗KAK − I||2 ≤ ||A∗A− I||F

where [N ] := 1, 2, · · · ,N and |K| is the cardinality of K, AK = (aj)j∈K, i.e. it
is the column sub-matrix of A consisting of the columns indexed by K.

Proof. The definition of the isometry constant is equivalent to [125]

|||Ax||22 − ||x||22| ≤ δk||x||22,

∀K ⊂ [N ], |K| ≤ k,∀x ∈ CN , supp x ⊂ K

The left hand side equals | < (A∗A− I)x, x > |. Taking the supremum over all
x ∈ Tk = {x ∈ CN , ||x||2 = 1, ||x||0 ≤ k} shows:

δk = sup
X∈Tk

| < (A∗A− I)x, x > |
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= max
K⊂[N ],|K|≤k

||A∗KAK − I||2

≤ max
K⊂[N ],|K|≤k

||A∗KAK − I||F

≤ ||A∗A− I||F

According to the theorem, instead of calculating the isometry constant directly,
we can measure the Frobenius norm of A∗A− I. A∗A is recognized as the point
spread function (PSF) in Donoho’s work [45]:

PSF(i; j) = e∗jA
∗Aei, (5.3)

where ei and ej is the ith and jth vector of natural basis, respectively. PSF is a
natural tool for measuring incoherence. It measures the contribution of a unit-
intensity pixel at the ith position to a pixel at the jth position [130]. With Nyquist
sampling there is no interference between pixels and PSF(i; j)i6=j = 0. Under-
sampling causes pixels to interfere and assigns nonzero values to PSF(i; j)i6=j . A
nonzero value of PSF at (i; j) means that linear reconstruction of pixel i suffers
interference by a unit impulse at pixel j 6= i. Since CS requires the aliasing
artifacts due to under-sampling to be incoherent, we expect PSF(i; j)i6=j to be
noise-like. From the energy viewpoint, the PSF measures the tendency of zero-
filled linear reconstruction to leak energy from the true underlying source pixel
to other pixels. This energy is shown as blurring or aliasing artifacts in the
reconstructed image. In designing the sampling matrix, such energy leakage is
expected to spread quasi-uniformly across the image.

To determine the impacts of sampling schemes on reconstruction quality, the
Frobenius norm of A∗A− I, noted as Υ , is adopted as the quantified index. It
is shown as follows in terms of PSF with normalized-column A:

Υ = ||PSF− I||F (5.4)

Satisfactory reconstruction can be expected when Υ is small.
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5.3.2 Analysis Based on FST

It was shown in Chapter 4 that Fourier slice theorem (FST) perfectly connects
the CT system matrix and the Fourier matrix. Hence, it is feasible to analyze
the sparse sampling effect based on the RIP of the Fourier transform, which is
well defined. Recall that the projection model is formulated as


P1F

−1
1
P2F

−1
1

. . .
PqF−1

1

PF2x = b,

and we set A1 =


P1F

−1
1
P2F

−1
1

. . .
PqF−1

1

, A2 = PF2. We listed in

Table 4.1 the effects of sampling patterns on A1 and A2, and now we investigate
how it affects the reconstruction.

The four sampling patterns all conform to the case where A1 is sampled while A2

maintains the full-sampling status, which results in a synthesis model with the
dictionary A2:

x̂s = minx λ||x||1 +
1
2 ||A1A2x− b||22 (5.5)

The model (5.5) is nearly equivalent [47] to the analysis model with a full row-rank
dictionary A+

2 = (AT2 A2)−1AT2 :

x̂a = A+
2 (miny λ||A+

2 y||1 +
1
2 ||A1y− b||22) (5.6)

The proof is in Section 5.3.3.

The initial CS theory holds for signals that are sparse in the standard coordinate
basis or sparse with respect to some orthonormal basis. However, in the above
analysis model (5.6), A+

2 is obviously with correlated columns. Here we need some
improved results from the authors of [20], who state that CS is also viable in this
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context. It is proposed to reconstruct from noisy measurements b = Ax + z via:

x̂ = minx ||ψ
∗x||1 s.t. ||Ax− b||2 ≤ ε (5.7)

where ψ is an arbitrary tight frame, ε is a likely upper bound on the noise power
||z||22.

Definition 5.2 (ψ-RIP). Let ∑
k be the union of all subspaces spanned by all

subsets of k columns of ψ, then the measurement matrix A obeys the restricted
isometry property adapted to ψ (abbreviated ψ-RIP) with constant δk if

(1− δk)||v||22 ≤ ||Av||22 ≤ (1 + δk)||v||22

holds for all v ∈ ∑
k.

Theorem 5.3. Let A be a measurement matrix satisfying ψ-RIP with δ2k < 0.08.
Then the solution to (5.7) obeys

||x̂− x|| ≤ C0ε+C1
||ψ∗x− (ψ∗x)k||1√

k

where the constants C0 and C1 may only depend on δ2k, (ψ∗x)k is the vector
consisting of the largest k entries of ψ∗x in magnitude.

The assumption that ψ is a tight frame is not necessary and is proposed to
simplify the analysis. Theorem 5.3 shows that `1-analysis is accurate when the
coefficients of ψ∗x are sparse or decay rapidly. To return to our problem (5.6),
we can now analyze it with standard CS knowledge, which states that random
partial Fourier matrix can gain satisfactory reconstruction through CS.

For detector sampling, the sampling pattern reflects directly on P1,P2, · · · ,Pq. It
is preferable that P1,P2, · · · ,Pq present random distribution rather than regular
distribution.

Angle sampling causes cluster distribution at each view of the parallel projections
because the fan projections at the same β correspond to a small cluster at the
same θ. That β is randomly distributed will make heavy sampling at some θ and
light sampling at other θ, while every θ is sampled by a similar ratio at the even β
case. In the Theorem III.1 proposed in [117], it is pointed out that the possibility
of the distinct block diagonal (DBD) matrices satisfying RIP is proportional to
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Γ2(Y, Q). Here Y is the signal being measured that can be divided into q blocks
[Y1 Y2 · · · Yq], and the definition of Γ2(Y, Q) is as follows:

Γ2(Y, Q) :=
(
∑q
j=1 ||Yj ||22)2∑q
j=1

||Yj ||42
Qj

where Q = [Q1,Q2, · · · ,Qq] is the measurement allocation. The bigger Γ2(Y, Q),
the more likely the DBD matrices will satisfy RIP. The theorem is for DBD
matrices composed of Gaussian matrix, but the influence of the signal property
should be the same for DBD matrices composed of Fourier matrix. In our case,
the [Y1 Y2 · · · Yq] are the coefficients on the lines of q angles at the Fourier
domain of the image, hence the similar energy. i.e. similar ||Yj ||22. To obtain
bigger Γ2(Y, Q), smaller ∑

j
1
Qj

is preferred. It is easy to know that ∑
j

1
Qj

achieves the minimum value when all Qj is equal based on the premise that∑
j Qj stays the same. Hence, the random β case is expected to have lower

reconstruction quality due to the higher coherence at the heavy sampling point.

Based on the theoretical analysis of FST and the RIP of Fourier matrix, among
the four sampling schemes, random-detector and regular-angle gain more satis-
factory reconstructions than regular-detector and random-angle, respectively.

5.3.3 Proof of Equivalence Between the Analysis and the
Synthesis Model

The synthesis model (5.5)

x̂s = minx λ||x||1 +
1
2 ||A1A2x− b||22

is nearly equivalent to the analysis model (5.6)

x̂a = A+
2 (miny λ||A+

2 y||1 +
1
2 ||A1y− b||22),

where A2 has full column-rank, then naturally A+
2 = (AT2 A2)−1AT2 has full row-

rank and A+
2 A2 = I.

Proof. The notation z = zA2 + zA2⊥ is introduced to denote the decomposition
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of a signal z to the part zA2 in the column-span of A2 and the part zA2⊥ in the
orthogonal subspace. We begin with the analysis model:

x̂a = A+
2 ( min

yA2 ,yA2⊥
λ||A+

2 (yA2 + yA2⊥)||1 +
1
2 ||A1(yA2 + yA2⊥)− (bA2 + bA2⊥)||22)

= A+
2 ( min

yA2 ,yA2⊥
λ||A+

2 yA2 +A+
2 yA2⊥||1 +

1
2 ||A1yA2 − bA2||22 +

1
2 ||A1yA2⊥ − bA2⊥)||22)

As yA2⊥ is orthogonal to the columns of A2, it is orthogonal to the rows of A+
2 .

Thus we have A+
2 yA2⊥ = 0, leading to:

x̂a = A+
2 ( min

yA2 ,yA2⊥
λ||A+

2 yA2||1 +
1
2 ||A1yA2 − bA2 ||22 +

1
2 ||A1yA2⊥ − bA2⊥)||22)

= A+
2 (min

yA2
λ||A+

2 yA2||1 +
1
2 ||A1yA2 − bA2 ||22 + min

yA2⊥

1
2 ||A1yA2⊥ − bA2⊥)||22)

Signals yA2 spanned by the columns of A2 have a representation as yA2 = A2x.
We can thus reformulate the former part of the above equation as an optimization
on x:

x̂a = A+
2 A2(minx λ||A+

2 A2x||1 +
1
2 ||A1A2x− bA2||22)

+A+
2 (min

yA2⊥

1
2 ||A1yA2⊥ − bA2⊥)||22)

= minx λ||x||1 +
1
2 ||A1A2x− bA2 ||22

+A+
2 (min

yA2⊥

1
2 ||A1yA2⊥ − bA2⊥)||22)

= minx λ||x||1 +
1
2 ||b

A2 −A1A2x||22 +
1
2 ||b

A2⊥||22

+A+
2 (min

yA2⊥

1
2 ||A1yA2⊥ − bA2⊥)||22)

= minx λ||x||1 +
1
2 ||b

A2 + bA2⊥ −A1A2x||22

+A+
2 (min

yA2⊥

1
2 ||A1yA2⊥ − bA2⊥)||22)

= minx λ||x||1 +
1
2 ||A1A2x− b||22

+A+
2 (min

yA2⊥

1
2 ||A1yA2⊥ − bA2⊥)||22)
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= x̂s +A+
2 (min

yA2⊥

1
2 ||A1yA2⊥ − bA2⊥)||22)

Now we can conclude that the analysis solution and the synthesis solution are
nearly equivalent and related by x̂a = x̂s+A+

2 (minyA2⊥
1
2 ||A1yA2⊥−bA2⊥)||22),

as claimed. To be more specific, the solving of the analysis model and the sys-
thesis model is equivalent in the sense that one solution can be obtained from the
other given fixed A1,A2 and b.

5.4 Optimization Algorithm – TVAL3

TVAL3 is short for ’TV minimization by Augmented Lagrangian and ALter-
nating direction ALgorithms’. As the name suggests, it involves two important
techniques. One is the augmented Lagrangian method, and the other is the al-
ternating direction method (ADM). We start with the introduction of ADM.

5.4.1 General Framework of ADM

Suppose that g(x) : Rp → R and h(y) : Rq → R are convex functions, A ∈
Rl×p,B ∈ Rl×q and b ∈ Rl, the constrained optimization problem is formulated
as:

minx,y g(x) + h(y) s.t. Ax +By = b. (5.8)

Its augmented Lagrangian function is written as:

LA(x, y,λ) = g(x) + h(y)−λT (Ax +By− b) + α

2 ||Ax +By− b||2,

where λ ∈ Rl is the Lagrangian multiplier and α > 0 is the penalty parameter.

In contrast to the classic augmented Lagrangian method, ADM takes advantage
of the separable form of the objective function and minimizes LA(x, y,λ) with
respect to x and y seperately via a Gauss-Seidel type iteration. ADM iterates as
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follows: given (yt,λ),


xt+1 ← argminx LA(x, yt,λt)
yt+1 ← argminy LA(xt+1, y,λt)
λt+1 ← λt − ηα(Axt+1 +Byt+1 − b).

Here a step length η is introduced in the update of λ, and it can guarantee the
convergence of ADM when η ∈ (0, (

√
5 + 1)/2) under certain technical assump-

tions [54, 55].

5.4.2 Specific Algorithm

The object is to solve:

minx TV(x) :=
∑
i

||Dix||2, s.t. Ax = b (5.9)

where x ∈ RN is the signal to be reconstructed, Dix is the discrete gradient of
x at pixel i, A ∈ Rm×N (m < N) is the measurement matrix, and b denotes the
measurement. The regularization term is addressed as the isotropic TV norm
and the developed algorithm can be easily extended to solve the problem with
the anisotropic TV norm, which is TVa(x) :=

∑
i ||Dix||1.

(5.9) is equivalent to:

minwi,x

∑
i

||wi||2 s.t. Ax = b,Dix = wi,∀i (5.10)

the corresponding augmented Lagrangian function of which is:

LA(wi, x, vi,λ) =
∑
i

(||wi||2 − vTi (Dix−wi) +
αi
2 ||Dix−wi||22)

−λ(Ax− b) +
τ

2 ||Ax− b||22. (5.11)

vi,λ here are the Lagrangian multipliers.

Given xt, vti and λt, the minimizer wt+i
i is updated as follows:

wt+i
i = Shrink2(Dixt − vi/αi,

1
αi
)
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:= max{||Dixt − vi/αi||2 −
1
αi

, 0} Dixt − vi/αi
||Dixt − vi/αi||2

.

In the case of anisotropic TV norm, the update of wt+1
i is given by:

wt+i
i = Shrink1(Dixt − vi/αi,

1
αi
)

:= max{|Dixt − vi/αi| −
1
αi

, 0} ◦ sgn(Dixt − vi/αi).

where ◦ denotes component-wise multiplication, and sgn(z) :=


−1 if z < 0
0 if z = 0
1 if z > 0

.

Interested readers can refer to [91] pp 21-25 for details and proof.

With fixed wt+1
i , vti and λt, (5.11) is quadratic with respect to x and its gradient

can be easily derived as:

dt(x) =
∑
i

(αiD
T
i (Dix−wt+1

i )−DT
i vi) + τAT (Ax− b)−ATλ.

It is ideal to force dt(x) = 0 for the exact minimizer xt+1, however, the numerical
implement is too costly to realise. A one-step steepest descent method is proposed
here instead:

xt+1 = xt − εtdt(xt),

where εt is the step length chosen in the aggressive manner proposed by Barzilai
and Borwein [8], known as the BB step. It is validated by the nonmonotone
Armijo condition [166].

Finally, the multipliers are updated by:

vt+1
i = vti − ηαi(Dixt+1 −wt+1

i ), ∀i
λt+1 = λt − ητ (Axt+1 − b)

79



Chapter 5. Analysis of Compressed Sensing-Based CT
Reconstruction with Low Radiation

In conclusion, (5.9) is solved via ADM with iterations as below:


wt+i
i = Shrink2(Dixt − vi/αi, 1

αi
),∀i

xt+1 = xt − εtdt(xt)
vt+1
i = vti − ηαi(Dixt+1 −wt+1

i ),∀i
λt+1 = λt − ητ (Axt+1 − b)

The convergence analysis is provided in [92] pp 23-31.

5.5 Simulation

5.5.1 Comparison between FBP and TV-based CS

The experiment was conducted over twenty real CT images, and two were selected
for illustration here. The image size was set to be 128× 128 and the distance
from the source to the image centre equalled the image size in each dimension, i.e.
R = n. The spacing of the fan-beam sensors was 0.7◦, and the number of sensors
was 133, determined by calculating how many beams were required to cover the
entire image for any rotation angle. A complete projection set should be taken
at 1◦ increments over a full 360◦ range, and the low-radiation projections were
obtained with the golden-angle scanning, corresponding to 50%, 25%, 17% of the
full projections, respectively. For the TV-based CS method, the results are shown
in Figure 5.1 and Figure 5.2.

As the figures show, with the decrease of projections, the reconstruction quality
of FBP also decreases, while CS manages to maintain good reconstruction until
the 17% of the full projections. In order to further validate our analysis, we
assessed the performance of the reconstructions from different sampling patterns.
The normalized mean square error (NMSE) was adopted to indicate the closeness
between the original image f0 and the recovered image f :

NMSE = E

{
||f − f0||2
||f0||2

}

The numerical results of CT1 and CT2 are shown in Table 5.1. They are consis-
tent with the visual results.

80



Chapter 5. Analysis of Compressed Sensing-Based CT
Reconstruction with Low Radiation

(a) FBP with 360 scan-
ning angles

(b) TV_CS with 360
scanning angles

(c) FBP with 180 scan-
ning angles

(d) TV_CS with 180
scanning angles

(e) FBP with 90 scan-
ning angles

(f) TV_CS with 90 scan-
ning angles

(g) FBP with 60 scan-
ning angles

(h) TV_CS with 60
scanning angles

Figure 5.1: Comparison of reconstruction results on CT1 from FBP and
TV_CS
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(a) FBP with 360 scan-
ning angles

(b) TV_CS with 360
scanning angles

(c) FBP with 180 scan-
ning angles

(d) TV_CS with 180
scanning angles

(e) FBP with 90 scan-
ning angles

(f) TV_CS with 90 scan-
ning angles

(g) FBP with 60 scan-
ning angles

(h) TV_CS with 60
scanning angles

Figure 5.2: Comparison of reconstruction results on CT2 from FBP and
TV_CS
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Table 5.1: Comparison of reconstruction results in terms of NMSE

CT1 CT2
No. of scanning angles 360 180 90 60 360 180 90 60

FBP 0.18 0.19 0.26 0.32 0.13 0.14 0.19 0.25
TV_CS 0.09 0.11 0.12 0.16 0.08 0.09 0.10 0.11

5.5.2 CS-Based Reconstruction with Different Sampling
Schemes

The experimental setting was as follows: The image size was set to be 128× 128.
The distance from the source to the centre of the domain was R = 2n. The span
of the rays was defined such that from (2n, 0) the first ray hit the point (n/2,n/2)
and the last ray hit (n/2,−n/2). We took the reference point of full sampling
with 2n samples in both the view and bin direction, i.e. Nviews = Nbins = 2n.
Two groups of simulations were designed to test the detector and scan angle sam-
pling, respectively. For the first group, the view number was 256. The detector
sampling ratio varied from 10%− 80%, with regular and random distribution.
For the second group, the detector number was 256. The angle sampling ratio
varied from 10%− 80%, with golden-angle and random-angle patterns. In the
random sampling case, the values were averaged over 10 groups of experiments.
The results are recorded in Table 5.2 and Table 5.3, respectively, where µ is the
sidelobe-to-peak ratio (SPR) developed in [94].

Table 5.2: Group1 the detector setting

regular-detector random-detector
sampling ratio Υ(102) µ(10−1) Υ(102) µ(10−1)

10% 3.75 8.61 3.11 6.69
20% 2.97 9.47 2.73 6.23
30% 2.68 7.65 2.57 5.84
40% 2.55 6.78 2.50 5.63
50% 2.45 6.78 2.44 5.53
60% 2.44 6.15 2.42 5.50
70% 2.41 5.70 2.39 5.37
80% 2.38 5.40 2.37 5.29

According to Table 5.2 and Table 5.3, golden-angle and random-detector obtain
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Table 5.3: Group2 the angle setting

golden-angle random-angle
sampling ratio Υ(102) µ(10−1) Υ(102) µ(10−1)

10% 3.05 5.67 3.27 6.08
20% 2.61 5.35 2.81 5.62
30% 2.48 5.37 2.61 5.42
40% 2.42 5.34 2.53 5.45
50% 2.39 5.31 2.47 5.38
60% 2.38 5.29 2.45 5.35
70% 2.37 5.18 2.40 5.27
80% 2.36 5.24 2.39 5.25

lower Υ and µ than random-angle and regular-detector in under-sampled cases,
respectively, indicating higher incoherence of the system matrix and better re-
construction through CS. It can also be seen from Table 5.2 and Table 5.3 that
the index developed in this thesis is more sensitive than that in [94] because Υ
monotonically decreases with the increase of the sampling ratio, while µ shows
some exceptions. The results are also shown graphically in Figure 5.3.

Two classes of images were involved as the object, artificial phantom images
and real CT images. Twenty images were taken from each of class, and three
were selected to show the reconstruction results, as in Figure 5.4 and Table 5.4.
The reconstructions with different sampling patterns are displayed in Figure 5.5,
Figure 5.6 and Figure 5.7.

Table 5.4 shows that the NMSE is lower with the random-detector and regular-
angle sampling schemes than the other two, especially in the heavily under-
sampled case. Putting Table 5.2 and Table 5.3 together with Table 5.4, we can
see that the reduction of Υ for 102 or the reduction of µ for 10−1 contributes to
the reduction of the NMSE for at least 10%. We can also see from Figure 5.5,
Figure 5.6 and Figure 5.7 that the reconstructed images from the regular-detector
and random-angle schemes show more noise and blurred details. Hence, we can
conclude that simulation results are consistent with the theory prediction, that
the random-detector and regular-angle schemes provide more satisfactory recon-
structions than the regular-detector and random-angle schemes.
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(a) the detector setting

(b) the angle setting

Figure 5.3: PSF variations with regard to the sampling ratio

Figure 5.4: Reconstruction objects

5.6 Conclusion

In this chapter, the property of the system matrix for fan-beam CT has been
investigated with the purpose of both reducing the radiation dose and preserving
high-quality recovery. With the under-sampled projections, CS was employed
for the recovery using the optimization algorithm of TVAL3, and has shown
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Table 5.4: NMSE with different sampling patterns in fan-beam CT

Shepp-logan 10% 20% 30% 40% 50% 60% 70% 80%
regular-angle 10.18% 0.20% 0.13% 0.12% 0.11% 0.10% 0.11% 0.09%
random-angle 22.01% 3.98% 0.15% 0.13% 0.12% 0.12% 0.12% 0.11%
regular-detector 40.55% 8.24% 1.31% 0.43% 0.17% 0.12% 0.13% 0.10%
random-detector 11.23% 0.16% 0.13% 0.12% 0.12% 0.11% 0.11% 0.11%

CT1 10% 20% 30% 40% 50% 60% 70% 80%
regular-angle 22.22% 6.91% 0.90% 0.26% 0.18% 0.15% 0.13% 0.13%
random-angle 24.60% 9.33% 3.23% 0.88% 0.32% 0.19% 0.15% 0.14%
regular-detector 39.58% 16.63% 6.44% 1.92% 0.56% 0.22% 0.15% 0.14%
random-detector 17.67% 5.97% 0.57% 0.21% 0.17% 0.15% 0.14% 0.13%

CT2 10% 20% 30% 40% 50% 60% 70% 80%
regular-angle 22.19% 6.13% 0.61% 0.16% 0.15% 0.12% 0.12% 0.11%
random-angle 25.55% 10.15% 3.37% 0.33% 0.27% 0.15% 0.13% 0.13%
regular-detector 41.14% 17.65% 6.23% 1.46% 0.50% 0.26% 0.14% 0.12%
random-detector 18.17% 5.04% 0.55% 0.17% 0.15% 0.13% 0.12% 0.11%

advantages over FBP in the simulations. Four under-sampling patterns were
considered: golden-angle, random-angle, regular-detector and random-detector.
Two tools were used for the analysis of the impacts of different sampling schemes
on reconstructions: PSF and FST. Based on PSF, an evaluation index was pro-
posed: the Frobenius norm Υ of the difference matrix between PSF and the
identity matrix. The lower Υ, the better the reconstruction. In contrast, high
off-diagonal interference in PSF implied low-quality recovery. Based on FST, the
system matrix was decomposed to Fourier matrix and our aim was converted
to the study of sampling on Fourier matrix. The golden-angle system obtained
lower Υ than random-angle and the random-detector setting obtained lower Υ
than regular-detector. Experiments were conducted on phantom image and real
CT images, of which the results were measured by normalized mean square error
(NMSE). NMSE results were consistent with the indicator results, where golden-
angle scanning and random-detector setting obtained lower NMSE than the other
two, respectively.

Using both the theoretical and experimental analysis, the purpose of reducing ra-
diation dose without compromising the reconstruction quality has been achieved.
The conclusion is that golden-angle and random-detector scanning is the most
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(a) original image

(b) golden-angle (c) random-angle

(d) regular-detector (e) random-detector

Figure 5.5: Phantom reconstruction from 10% angle and 30% detector

favourable for post-CS-based reconstruction.
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(a) original image

(b) golden-angle (c) random-angle

(d) regular-detector (e) random-detector

Figure 5.6: CT1 reconstruction from 30% angle and 30% detector
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(a) original image

(b) golden-angle (c) random-angle

(d) regular-detector (e) random-detector

Figure 5.7: CT2 reconstruction from 30% angle and 30% detector
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Chapter 6

Compressed Sensing-Based CT
Reconstruction from Mojette
Projections

6.1 Introduction

Classical tomography is concerned with the recovery of the scanned object from
a set of projections, which is the Radon transform (RT) [146] of the object. As
Radon transform is continuous, both for the object under scan and the projec-
tions themselves, it has to be sampled to adjust to practical applications, resulting
in ill-posedness. The conventional solution is to acquire the projections over a
large number of view angles and use filtering in the frequency domain, which
on one hand increases radiation dose and on the other still produces artifacts in
the reconstruction result. Discrete Radon transform gives a different view of the
tomographic problem. It regularizes the ill-posedness of inverse Radon transform
and allows for an exact reconstruction in the discrete domain with a finite num-
ber of projections. Many discrete Radon methods, for example, arbitrary curve
block circulant discrete RT [12, 84], d-lines discrete RT [17, 58] and Fast Slant
Stack [6], tend to suffer from either experimental limitations or high computa-
tional complexity [28]. This chapter will focus on the Mojette transform, first
proposed by Guédon et al. [59], which is a both experimentally and computation-
ally viable discretization of Radon transform. Despite its advantages, Mojette
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transform has two main shortcomings. One is that it is not compatible with the
physical acquisition of CT, and this problem is addressed in [127], in which the
authors design a linear system to calculate the Mojette projections from a Radon
acquisition. The other is that the angle and bin set are different from practi-
cal CT machine, i.e., classical tomography acquires are equally distributed over
2π with a fixed number of bins onto each projection, while Mojette transform
is defined over Farey angles with varying orientation and number of bins onto
each projection. Much research [27,48,85] has been done, committed to applying
Mojette transform to classical tomographic data, which implies the advantage of
Mojette transform on one hand and improves the potential of Mojette transform
in practical applications on the other hand. Fayad et al. [48] claim that any set
of real, acquired tomographic data can be rebinned into a compatible Mojette
projection space, without any loss of reconstruction power.

After obtaining the projections, the next step is the reconstruction problem. Katz
[83] presents some reconstructibility theorems for discrete images and projections.
A good deal of work has also been done to recover objects based on Mojette
projections, committed to the improvement of accuracy. Since we also attempt to
reduce the radiation dose, a newly developed technique called compressed sensing
(CS) is used. CS attempts to reconstruct signals from significantly fewer samples
than were traditionally thought necessary (cf. the Nyquist sampling theorem)
[95]. CT imagery meets the two key requirements for successful application of
CS: it is compressible in some transform domain and the scanner receives encoded
samples. Applying CS to CT reconstruction, high-accuracy reconstruction with
low-dose radiation is expected to be obtained [61].

The main contribution of the chapter is that a novel reconstruction frame, i.e. the
combination of Mojette transform and CS, is proposed in the interests of accuracy
and reduced radiation. A detailed description and explanation of how to modify
Mojette projections for the application of CS is given. In addition, the reason
for using Mojette transform instead of Radon transform is analyzed. We also
show a simple way to calculate the point spread function (PSF) of the proposed
method by proving the PSF should be a Toeplitz matrix. The rest of the chapter
is organized as follows. In Section 6.2, the Mojette transform and CS is briefly
introduced, and the relation between Mojette transform and the 2-D Fourier co-
efficients of the scanning object is formulated. Next, the detailed reconstruction
frame is described and thoroughly compared with the direct application of CS.
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Finally, the specified optimization algorithm of RecPF is described. Section 6.3
gives the experimental results to validate the accuracy, low-dosage radiation and
noise tolerance of the proposed frame, and also presents some discussion. Con-
clusions are drawn in Section 6.4.

6.2 Reconstruction Frame Based on Mojette Trans-
form and Compressed Sensing

6.2.1 Mojette Transform

For simplicity, we assume the scanning object to be f(x, y) with the size n× n
and n is even. The CT scanner maps the 2-D object into a set of 1-D projection
lines, which forms the sinogram. Each line is the Radon transform of f for a
given angle θ and a module r [146], defined by:

s(θ, r) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(r− x cos θ− y sin θ)dxdy (6.1)

where θ and r are respectively the angular and radial coordinates of the projection
line (θ, r), and δ(·) is the Dirac delta function.

The Dirac-Mojette transform is an exact discretization of the Radon transform. It
is defined over angles θ = tan−1( qp) where p and q are relatively prime integers.
As the Farey series of order K, denoted by FK , is the set of all fractions in
lowest terms between 0 and ∞ whose denominators do not exceed K, e.g. F4 =

[0
1 , 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1
1 , 4

3 , 3
2 , 2

1 , 3
1 , 4

1 , 1
0 ], we can use it to give a set of discrete angles

between [0, π2 ] and obtain the angles over [0, π] by symmetry. The Dirac-Mojette
transform is defined as:

Mp,q(r) =
∑
x

∑
y
f(x, y)δ(r− px− qy) (6.2)

The geometry of the Dirac-Mojette projector is shown in Figure 6.1, where the
pixel is summed to its corresponding bin if and only if the X-ray passes through
the centre of the pixel [28].

Fourier slice theorem claims that the 1-D Fourier transform of the projections is
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Figure 6.1: Dirac-Mojette Projection of a 6× 6 image

equal to the 2-D Fourier transform of the image evaluated on the line that the
projection was taken on. In this chapter, it is formulated that the 2-D Fourier
values of the scanning object can be obtained exactly through Mojette transform.
Suppose (u, v) is the coordinate in the frequency domain, then the 2-D discrete
Fourier transform of f(x, y) is:

F(u, v) =
∑
x

∑
y
f(x, y)e−j

2π
n (ux+vy) (6.3)

The 1-D discrete Fourier transform of Mp,q(r) is:

FMp,q(ρ) =
∑
ρ
Mp,q(r)e

−j 2π
L ρr (6.4)

where L is the projection size, and L = (n− 1)(|p|+ |q|) + 1. Combining (6.2)
and (6.4), we obtain:

FMp,q(ρ) =
∑
x

∑
y
f(x, y)e−j

2π
L ρ(px+qy) (6.5)

Comparing (6.3) and (6.5), it is hard to map FMp,q(r) to F(u, v) directly. Con-
sidering the periodicity of the Fourier transform, we can merge the items gained
by (6.2) with the same mod(px+ qy,n), then projection size can be reduced to
n. So

M ′p,q(r) =
∑
x

∑
y
f(x, y)|r=mod(px+qy,N) (6.6)
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Its 1-D Fourier transform is:

FM′p,q(ρ) =
∑
x

∑
y
f(x, y)e−j

2π
n ρ[mod(px+qy,n)]

=
∑
x

∑
y
f(x, y)e−j

2π
n [mod(ρpx+ρqy,n)]

(6.7)

The mapping relationship is revealed by the analysis of (6.3) and (6.7):

∀x, y,mod(ux+ vy− rpx− rqy,n) = 0 (6.8)

Hence, the 1-D Fourier transform of the modified Mojette projections taken over
angles θ = tan−1( qp) can be mapped to the 2-D Fourier plane of the scanning
object with the mapping relationship:

mod(u− rp,n) = 0 & mod(v− rq,n) = 0 (6.9)

As a result, we can obtain the partial Fourier coefficients wheremod(qu−pv,n) =
0. The Fourier coefficients gained through the mapping of the Mojette projections
in Figure 6.1 (n = 6, tanθ = 1

2) are marked with stars in Figure 6.2.

Figure 6.2: Corresponding Fourier values of the Mojette projections in Fig-
ure 6.1
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6.2.2 Formulation of CS-Based Reconstruction Model

Compressed sensing is a recently developed theory of signal recovery from highly
incomplete information, and is employed here to reconstruct the image from the
partial Fourier coefficients. The central idea of CS is that a sparse or compressible
signal x ∈ CN can be recovered from a small number of linear measurements
b = Ax ∈ Cm,m� N .

The reconstruction can be achieved by solving the well-known basis pursuit prob-
lem [23]:

min ||x||1 s.t. Ax = b (6.10)

With noisy and incomplete samples, an appropriate relaxation is given by:

min ||x||1 s.t. ||Ax− b||2 ≤ ε (6.11)

where ε > 0 is related to the noise. To gain more effective reconstruction results,
a simple and fast algorithm called RecPF (Reconstruction from Partial Fourier
data [160] is adopted. It uses an alternating minimization scheme to solve the
following model:

minx TV(x) + τ1||ϕx||1 +
τ2
2 ||Fpx− x̂p||2 (6.12)

where TV(x) is the total variation regularization term, ϕ is a sparsifying basis
(e.g., wavelet basis), Fp is a partial Fourier matrix and x̂p denotes the partial
Fourier coefficients. As the main computation in solving the model only involves
shrinkage and fast Fourier transforms, the reconstruction process is quite fast.

It is noticed that when the system matrix is a partial Fourier matrix, i.e. A = Fp,
its point spread function (PSF) possesses certain properties and can be calculated
efficiently. For simplicity, we investigate the 1-D case. (6.12) implies that:

x̂p = Fpx,

and it leads to
xp = F ∗pFpx,

where xp = F ∗p x̂p. This shows that PSF here is the relationship between xp and
x.
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Suppose
x̂′p = P̂x̂, (6.13)

where P̂ is a N ×N diagonal matrix with m random 1 and N −m 0 along the
diagonal line, we have

xp = F ∗P̂Fx,

where F stands for the full Fourier matrix, and its conjugate F ∗ the inverse
Fourier matrix.

Now we can conclude that

PSF = F ∗pFp = F ∗P̂Fx.

This makes the calculation of PSF quite efficient as F and F ∗ can be implemented
via operations rather than specific matrices.

On the other hand, due to the complex convolution property of discrete Fourier
transform, it is deduced from (6.13) that

xp = P ∗
N x,

where P is the inverse Fourier transform of P̂ , and ∗N denotes circular convolution.
Hence, the PSF must be a Toeplitz matrix. The proof can be easily applied to
the 2-D case.

6.2.3 Proposed Frame

The proposed frame contains two stages. In the first stage, the sinogram is
converted to Mojette projections using the linear system designed in [127], then
their Fourier values are mapped to the 2-D Fourier domain of the object. In the
second stage, CS is applied to the partial Fourier coefficients for the recovery
of the object. In this section, details are given regarding the advantages of the
proposed method (MCS) over the direct CS application in CT reconstruction,
the flowcharts for which are shown in Figure 6.3, respectively.

As we can see from the flowcharts, using Mojette projections instead of Radon
projections can avoid different gridding problems. The gridding problem is ad-
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(a) MCS (b) direct CS

Figure 6.3: Flowcharts of MCS and direct CS

dressed in Chapter 4, which stated that the error in Fourier domain reduces with
the increase of the zero-padding size. It involves large computation load but not
complete noise removal, while the mapping is theoretically exact in the Fourier
domain from Mojette projections.

In addition, Radon transform has the problem of irregular sampling, as shown in
Fig. 6.4. In the scheme at left, the grey pixel is omitted in the sampling while in
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the scheme at right , the middle grey pixel is considered twice while others are
considered only once (the dark grey and light grey pixels). The irregular sampling
also causes artifacts in the Fourier coefficients.

Figure 6.4: Irregular sampling of Radon transform

According to the above analysis, we know that dealing with Radon projections
directly results in very noisy Fourier coefficients. In contrast, Mojette transform
overcomes the irregular sampling of the Radon transform, solves the gridding
problem and thus obtains the exact Fourier values. Combining it with CS, it is
expected to obtain high-accuracy reconstruction results from limited-angle pro-
jections (i.e. low-dosage radiation).

6.2.4 Optimization Algorithm – RecPF

RecPF is a fast alternating direction method for TVL1-L2 signal reconstruction
from partial Fourier data proposed by Yang et al. [160]. The object is to solve

min
x∈RN

∑
i

||Dix||2 + τ1||ϕx||1 +
τ2
2 ||Ax− b|||22 (6.14)

where x is the object to be reconstructed, ∑
i ||Dix||2 denotes the isotropic total

variation norm, ϕ stands for the othonormal basis, A and b are the system
matrix and the measurements, and τ1, τ2 > 0 are the parameters to balance
regularization and data fidelity. Here for any i, Di is a 2-by-N matrix such that
the two entires of Dix represent the horizontal and vertical local finite differences
of x at pixel i, and the periodic boundary conditions for x are applied.

In accordance with the ADM model, the auxiliary variables w = [w1, · · · , wN ],
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wi ∈ R2 and z ∈ RN are introduced to transform (6.14) to:

minw,z,x

∑
i

||wi||2 + τ1||z||1 +
τ2
2 ||Ax− b|||22, s.t. wi = Dix, ∀i; z = ϕx.

(6.15)

To tackle the linear constraints, the augmented Lagrangian function of (6.15) is
formulated as below:

LA(w, z, x,λ1,λ2) =
∑
i

(||wi||2 − (λ2)
T
i (wi −Dix) +

α1
2 ||wi −Dix||22)

+
∑
i

τ1|zi − (λ1)i(zi − ϕix) +
α2
2 (zi − ϕix)|2

+
τ2
2 ||Ax− b|||22, (6.16)

where λ1,λ2 are the Lagrangian multipliers, and ∀i, (λ1)i ∈ R, (λ2)i ∈ R2. ϕi
is the ith row of ϕ. Without generality, it can be assumed that α1 = α2 = α for
simplicity.

For fixed xt and λt = (λt1,λt2), the minimizer zt+1
i is given by:

zt+1
i = Shrink1(ϕixt + (λt1)i/α, τ1/α)

:= max{|ϕixt + (λt1)i/α| − τ1/α, 0} ◦ sgn(ϕixt + (λt1)i/α),∀i,

and the minimizer wt+1
i is given by:

wt+1
i = Shrink2(Dixt + (λt2)i/α, 1/α)

:= max{||Dixt + (λt2)i/α||2 − 1/α, 0} · Dixt + (λt2)i/α
||Dixt + (λt2)i/α||2

,∀i.

Let D(1) and D(2) denote the horizontal and vertical global finite difference
matrices, D := (D(1);D(2)) and Wj := (w1(j); · · · ; wN (j)), j = 1, 2, W :=
(W1; W2). Then the minimization of LA can be rewritten as:

minx −λT2 (W−Dx) +
α1
2 ||W−Dx||22)

−λT1 (z− ϕx) +
α2
2 ||z− ϕx||22 +

τ2
2 ||Ax− b|||22,
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which is equivalent to the normal equation below:

Mx = y, (6.17)

where
M = DTD+ ϕTϕ+

τ2
α
ATA,

and
y = DT (W−λ2/α) + ϕT (z−λ1/α) + (τ2/α)ATb.

Since ϕ is the othogonal basis, we have ϕTϕ = I. It is also noticed that the
finite difference matrices D(1) and D(2) are block circulant matrices and can be
diagonalized by the discrete Fourier transform F and its inverse F ∗, i.e. D̂(j) =

FD(j)F ∗, j = 1, 2 is diagonal. It is known that the system matrix A is a partial
Fourier matrix, noted as Fp. Taking these elements into account and for the
purpose of simplifying the problem in (6.17), we multiply it by F on both sides.

right side = F (DT (W−λ2/α) + ϕT (z−λ1/α)) +
τ2
α
· P Tb

= ŷ

left side = (FDTDF ∗ + FIF ∗ +
τ2
α
FF Tp FpF

∗) · Fx

= (F (D(1)T ,D(2)T )F ∗F (D(1);D(2))F ∗ + I +
τ2
α
P TP ) · Fx

= (D̂T D̂+ I +
τ2
α
P TP ) · Fx

= M̂ x̂

where D̂ = (D̂(1); D̂(2)),P = FpF
∗, x̂ is the 1D DFT of x, and M̂ = D̂T D̂+ I +

τ2/αP TP is a diagonal matrix, which makes M̂ x̂ = ŷ straightforward to solve.
x is simply the 1-D inverse Fourier transform of x̂.

Finally, the multipliers are updated by:

(λ1)
t+1
i = (λ1)

t
i − ηα(zt+1

i − ϕixt+1),∀i
(λ2)

t+1
i = (λ2)

t
i − ηα(wt+1

i −Dixt+1),∀i
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To sum up, (6.14) is solved via ADM with iterations as below:


zt+1
i = Shrink1(ϕixt + (λt1)i/α, τ1/α),∀i

wt+1
i = Shrink2(Dixt + (λt2)i/α, 1/α), ∀i

xt+1 = F ∗(ŷ/M̂)

(λ1)
t+1
i = (λ1)ti − ηα(zt+1

i − ϕixt+1),∀i
(λ2)

t+1
i = (λ2)ti − ηα(wt+1

i −Dixt+1), ∀i

where ŷ depends on (wt+1, zt+1) and (λt1,λt2). The iterations are terminated
simply when the relative change in x becomes sufficiently small.

For convergence analysis, this algorithm falls into the category of exact ADM.
Classic results in the literature [54,55] show that for any α > 0 and η ∈ (0, (

√
5+

1)/2), the sequence {wt, zt, xt} generated by this algorithm from any starting
point {w0, z0, x0} converges to a solution of (6.15).

6.3 Experimental Results and Discussion

6.3.1 Noise-free Reconstruction

In this section, two groups of experiments are described over the same Farey an-
gle sets and different Farey angle sets, respectively. The performance of different
methods is measured through the quantities listed below: the error in the recon-
structed image relative to the original image (Err), signal-to-noise ratio (SNR)
and mean square error (MSE). Suppose that f0 denotes the original image, and
f is the reconstructed image, then the definitions of the three quantities are:

Err =

√√√√∑
i

∑
j(f(i, j)− f0(i, j))2∑
i

∑
j f0(i, j)2

SNR = 10 ∗ lg
∑
i

∑
j(f(i, j)−mean(f))2∑

i
∑
j(f(i, j)− f0(i, j))2

MSE = mean((f(i, j)− f0(i, j))2)

First, the experiments were conducted over the same Farey angle sets. We present
simulation results of the 256× 256 phantom image reconstruction obtained by
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MCS and two other methods: FBP and Mift, where FBP used filtered back-
projection algorithm over the Radon projections and Mift applied direct inverse
Fourier transform to the Mojette projections. The projections were taken over the
Farey angles. Figure 6.5 shows the reconstruction results of the three methods for
F8 projections, from which we can see that the FBP result has disturbing artifacts
due to limited projections, and Mift cannot recover the image from insufficient
Fourier samples. It is obvious that MCS produces an almost exact construction.
Table 6.1 gives the performance of the above three methods for different orders of
Farey series according to Err and SNR. In order to visualize the numerical results
intuitive, we plotted the Err of the three different methods as a function of the
order of Farey series, and the results are shown in Figure 6.6. We can see that
MCS achieves good reconstruction results with F4 projections, where the Err of
Mift and FBP is still larger than 50%. Figure 6.6 also shows that FBP can gain
better results than Mift with an increasing number of projections.

(a) original phantom (b) FBP

(c) Mift (d) MCS

Figure 6.5: Reconstruction results of the three methods from the projections
taken over F8
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Table 6.1: Comparisons of different methods over the same angle set

F
FBP Mift MCS

Err SNR Err SNR Err SNR
F1 235.56% -8.7 73.81% 1.4 75.2% 1.2
F2 147.72% -4.6 70.25% 1.8 63.08% 2.8
F3 92.05% -0.5 65.45% 2.4 13.57% 16.1
F4 71.08% 1.7 62.87 % 2.8 0.57% 43.7
F5 51.36% 4.5 60.46% 3.1 0.16% 54.7
F6 47.24% 5.3 59.35% 3.3 0.1% 58.4
F7 39.58% 6.8 53.33% 4.2 0.01% 78.1
F8 37.16% 7.4 50.82% 4.6 0.00% 89.4

Figure 6.6: A comparison of Err gained by different methods with the in-
creasing order of the Farey series

Next the experiments were conducted over different Farey angle sets. The Mo-
jette filtered backprojection algorithm (MFBP) [134] is used here for comparison.
We used the same experimental image as MFBP, a 128× 128 phantom image
consisting of a 17× 17 square object with unitary value, whereas the boundaries
were only half valued. Table 6.2 lists the MSE of MCS reconstruction results
with different orders of Farey series, while Table 6.3 is with MFBP. We can see
that MCS can gain better results over F1 angle set with just 4 projection lines
than MFBP over F32 angle set with 1296 projection lines. The reconstruction
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results are shown in Figure 6.7. The result of MFBP over F32 angle in (b) has
some disturbing artifacts, while MCS gives clear and exact reconstruction results
with only 4 projection lines. Figure 6.7 (d) shows the line mask of the partial
Fourier coefficients which are the input of CS. If the X-ray tube current is fixed,
the total radiation exposure of the target is proportional to the number of view
angles. Hence, the conclusion is drawn that fewer projections are needed for the
reconstruction with the help of CS, which means shorter scanning time and lower
radiation dosage, and thus will benefit patients more.

Table 6.2: MSE of MCS reconstruction results

F F1 F2 F3 F4
#proj 4 8 16 24
MSE 1.69× 10−7 6.95× 10−8 7.88× 10−9 1.23× 10−10

Table 6.3: MSE of MFBP reconstruction results

F F32 F64 F128
#proj 1296 5040 20088
MSE 0.01322 2× 10−5 0

6.3.2 Noise Tolerance

This experiment was designed to test the noise tolerance of the proposed frame.
We generated our test sets using the 256 × 256 Shepp-Logan phantom image
and FBP was employed for comparison. The Gaussian noise was added to the
Mojette projections in MCS and the Radon projections in FBP, respectively. In
both methods, the projections were taken over F8 angle set, i.e., 88 projections.
As the noise was produced randomly, the quantitative assessment (Err and MSE)
was the mean value of the 20 groups of experimental data, and the results are
shown in Table 6.4. We can see that for the Gaussian noise (0, 0.001), i.e. with
mean 0 and standard deviation 0.001, MCS achieves a much better reconstruction
than FBP, the results of which are shown in Figure 6.8. But for (0, 0.01) noise,
the result of FBP barely changes, while the reconstruction quality of MCS reduces
greatly, which means FBP is robust to noise and MCS is sensitive. The reason
is that MCS is based on noise-sensitive Fourier transform. When (0,0.01) noise

104



Chapter 6. Compressed Sensing-Based CT Reconstruction from
Mojette Projections

(a) original phantom (b) MFBP over F32

(c) MCS over F1 (d) line mask of F1

Figure 6.7: Reconstruction results of MCS and MFBP

is added to the projections, the noise of its Fourier coefficients becomes (0,0.1)
for a 256× 256 image, as verified in Figure 6.9. Since CS has some ability to
suppress noise, we conclude that though sensitive, the proposed frame can deal
with small noise effectively. It will be the subject of future work to deal with
noisier projections [126].

Table 6.4: Noise response of FBP and MCS

Noise
FBP MCS

Err SNR Err SNR
(0,0.001) 37.1577% 7.3586 2.1929% 31.9393
(0,0.01) 37.1587% 7.3584 23.1656% 11.4631
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(a) FBP (b) MCS

Figure 6.8: Reconstruction results from the F8 projections with Gaussian
noise (0, 0.001)

(a) Noise of projections

(b) Corresponding noise of the Fourier values

Figure 6.9: Noise of the projections and the Fourier values
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6.4 Conclusion

In this chapter, we have gained more understanding of the direct application of
CS in CT reconstruction by presenting a novel frame for parallel-beam CT. First,
the sinogram was converted to the projections gained through Mojette trans-
form, which is an exact discretization of the Radon transform. On each view
angle, the projections were summed up with the application of certain principles.
Then the 1-D Fourier coefficients of the merged projections were mapped to the
2-D Fourier domain of the object. Finally, compressed sensing was employed to
deal with the partial Fourier coefficients via the specific optimization algorithm
of RecPF, which recovered the object very well and suppressed the small noise
effectively. Experimental results have demonstrated the advantages of the pro-
posed method. Using Mojette transform and compressed sensing, the purpose
of reducing the radiation dosage during CT examinations without compromising
the image quality is achieved.
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Chapter 7

Compressed Sensing-Based
Sinogram Inpainting for CT
Reconstruction

7.1 Introduction

As stated earlier, increased X-ray radiation can lead to ionization of body cells
and raise the risk of cancer. Therefore to reduce the X-ray radiation dose without
compromising imaging quality has been an important and challenging problem in
CT development. The recent technique called compressed sensing (CS) [21–23,
40,42,95,149] has shown great potential. Unlike the conventional reconstruction
method, e.g. filtered back-projection (FBP), it does not require a large number of
X-ray radiation projections for satisfactory image formation and reconstruction
according to the Shannon-Nyquist sampling theorem. Rather, it is efficient and
powerful for recovering signals from incomplete measurements and has led to
applications in low radiation CT image reconstruction [29,61,68,70,139,140].

Recent studies on CT reconstruction by CS have been on the computational
efficiency [110, 116] and the improvement of reconstruction accuracy. Typically,
the work reported in [14] exploits the sparsity of objects in the total variation
(TV) domain, which is denoted as the CSTV model. In [88] and [89], the a priori
information is introduced as constraints of CS reconstruction in conjunction with
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TV minimization. There are generally two difficulties in the existing applications
of CS to CT reconstruction. The first is that as most CT images may not be
piecewise smooth, they are not sparse in the TV domain. The second is that
the fundamental CS theory requires that the compressed sampling scheme has
an incoherence property, in terms of the restricted isometry property (RIP) of
the CS sensing matrix, for stable reconstruction. To date there have been few
studies of CS reconstruction of CT images under the RIP condition. For example,
there has been a study of the analysis of RIP [73] and an empirical study of the
incoherence property in terms of the phase transition map [74].

This chapter addresses the above problems to exploit the formulation of a sens-
ing matrix for CT data acquisition which satisfies the RIP. In CT scanning and
data acquisition, the physical CT scan performs a mathematical Radon trans-
form. The set of the scanned measurement data is the sinogram, in which each
measurement datum represents the intensity of the attenuated X-ray radiation
along a path through the patients’ body. Under normal CT scan conditions, it
is observed that the sinogram is a smooth function of the X-ray radiation angle.
Correspondingly, its frequency domain representation is narrow band and hence
sparse. Based on this observation, we consider here the transformed sinogram in
the frequency domain as the reconstructed signal, which can satisfy the sparsity
condition. If the CT scan randomly collects under-sampled sinogram data, it
leads to a randomly sampled partial Fourier matrix as the sensing matrix for the
CT reconstruction, which is known to satisfy the RIP. As a result, the RIP and
sparsity conditions required by CS are satisfied for the CT reconstruction. Once
the transformed sinogram in the frequency domain is reconstructed, it can be
further processed to produce the CT image. The under-sampled sinogram data
set enables considerably reduced X-ray projection operations and hence reduced
X-ray radiation dosage to the patient.

The rest of the chapter is organized as follows. Section 7.2 presents brief formu-
lations of fan-beam CT data acquisition and the relation between fan-beam and
parallel-beam projections. The proposed CS sampling scheme and the regular-
ized optimization algorithm for CT reconstruction are presented in Section 7.3.
Section 7.4 shows the experimental results to demonstrate the advantages of the
proposed CS approach to CT reconstruction. Performance comparisons are shown
between the proposed weighted `1 regularized optimization (w`1) algorithm and
the existing CSTV-algorithm in terms of the visual effect and the reconstruction
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error. Conclusions are drawn in Section 7.5.

7.2 Formulation of Fan-beam CT Data Acquisi-
tion

The main part of a typical CT scanner is a doughnut-shaped gantry that has a set
of X-ray sources and detectors on opposite sides. The sources emit X-rays that are
attenuated when radiating through the object inside the gantry. The attenuated
X-ray intensities are projected on the detectors to form a set of measurement
data, from which CT images representing attenuation coefficients of the scanned
object can be reconstructed. Let the scanning object be f(x, y) in a Cartesian
coordinate system (x, y). The CT scan maps the object into a set of sinogram
data given by

s(θ, r) =
∫ ∞
−∞

∫ ∞
−∞

f(x, y)δ(r− x cos θ− y sin θ)dxdy (7.1)

where θ and r are respectively the angular and radial coordinates of the projection
line (θ, r), and δ(·) is the Dirac delta function. Without loss of generality, the
sinogram data sets considered in the rest of this chapter are sampled discrete
data sets.

The fan-beam data acquisition geometry has been described in Section 5.2.1.
Suppose that the fan-beam data set is denoted by sf (β, γ). The relation between
the independent variables of the fan-beam projections and parallel projections is

r = R sin γ and θ = β + γ. (7.2)

It follows that the corresponding sinogram data set s(θ, r) is

s(θ, r) = sf (θ− sin−1 r

R
, sin−1 r

R
). (7.3)

For any fixed r, the sinogram s(θ, r) satisfies s(0, r) = s(π,−r) and s(π, r) =

s(0,−r). Thus s(θ, r) is a continuous function of θ over θ ∈ [0, 2π) if it is
continuous over θ ∈ [0, π).
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7.3 The CS Approach to CT Image Reconstruc-
tion

7.3.1 Formulation of the CS Problem

It is known that the CS method can achieve signal recovery from much fewer
measurements than those usually required by the Shannon-Nyquist criterion.
Physically and practically, the objective of CT data acquisition with low X-ray
radiation directly requires reduced sampled numbers of the sinogram data set
s(θ, r). Theoretically, the CS reconstruction of the CT image further requires
that the sampling scheme of the sinogram data set s(θ, r) meets the RIP and
there is a wavelet domain in which the transformed CT image is sparse or com-
pressible [21–23].

To meet the above conditions for the CS reconstruction of CT images, a basic
consideration is that, under normal CT scan conditions and for any value of r,
the sinogram s(θ, r) is a continuous function with smooth values of the radiation
angle θ for θ ∈ [0, 2π). For any fixed r ≥ 0, let sr, with appropriate dimension,
be the vectorized representation of the sinogram s(θ, r) for θ ∈ [0, 2π) and ŝr be
the discrete Fourier transform (DFT) of sr. There exist DFT matrices F for all
r such that

ŝr = F sr. (7.4)

Correspondingly, the measurement sinogram data vector is written as

sr = F ∗ŝr. (7.5)

For the sinogram s(θ, r), being a continuous function of θ with smooth values, its
DFT data vector ŝr is narrow band and hence sparse in the frequency domain.
If this data vector is considered to be the reconstructed signal, it can meet the
sparse or compressible condition for the CS reconstruction.

In practical CT scans, the rotational CT scan mechanism can be controlled to
radiate fan-beam X-rays at randomly located angular positions. The randomly
controlled angular radiation and data acquisition positions in a range of β can
directly result in a set of under-sampled sinogram data vectors denoted by s̃r,
which is composed of randomly selected entries of sr. Corresponding to the
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vector s̃r of the random entries, there is a partial Fourier matrix of appropriate
dimension, denoted by Φr. It is composed of rows of the inverse DFT matrix F ∗

corresponding to the random entries of s̃r, such that

s̃r = Φrŝr. (7.6)

It follows from the known CS theory [21–23] that the partial Fourier matrix Φr

satisfies the RIP.

As a result, the formulation of the CS reconstruction of fan-beam CT images is
given by (7.6). It is based on the randomly under-sampled sinogram data vector
s̃r for reconstructing the sparse DFT data vector ŝr. Since the corresponding
sensing matrix Φr is a randomly under-sampled partial Fourier matrix, it satisfies
the RIP. The CS reconstructed ŝr, as the DFT of the complete sinogram data
vector, will contain sufficient information for further reconstruction of the CT
image.

7.3.2 The CS Reconstruction Frame

Given the under-sampled sinogram data vector s̃r and the CS reconstruction for-
mulation in the form (7.6), a number of algorithms are available for computation
of the reconstruction solution. The popular basis pursuit algorithm is formulated
as

min ‖ŝr‖1, subject to s̃r = Φrŝr, ∀r, (7.7)

where ‖ · ‖1 denotes the `1 norm. The problem can be alternatively formulated
as

min
ŝr

1
2σ‖s̃r −Φrŝr‖22 + ‖ŝr‖1, ∀r, (7.8)

where σ is a weighting parameter.

To present a more relevant and efficient CS algorithm for the considered CT
reconstruction problem, the narrow frequency band property of the frequency
domain data vector ŝr is taken into account. Following from the result of [25]
on the weighted CS technique, weighting factors wi are introduced to define the
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weighted `1 (w`1) norm of ŝr as

‖ŝr‖w1 =
∑
i

|wiŝri|, (7.9)

where ŝri denotes the ith entry of ŝr. The guideline for the selection of the
weighting factors wi is that large weighting factors are applied to small entries of
the reconstruction vector. Based on the fact that the frequency domain vector ŝr
is in general of low pass nature, typically with the magnitude frequency plot as
shown in Fig. 7.1(a), the weighting factors selected for the weighted `1 norm and
the CS reconstruction algorithm in this chapter is of a triangle shape, as shown in
Fig. 7.1(b). Using the weighting factors and the weighted `1 norm, the weighted
`1 regularized optimization algorithm for the CS reconstruction of CT images is
formulated as

min
ŝr

1
2σ‖s̃r − Φ̃rŝr‖22 + ‖ŝr‖w1, ∀r. (7.10)

(a) Typical magnitude frequency plot (b) Plot of weighting factors

Figure 7.1: Plots of magnitude frequency and weighting factors.

The weighted `1 regularized optimal CS reconstruction algorithm computes a
solution for the DFT vectors ŝr, ∀r. The sinogram vectors sr, ∀r, can be obtained
by taking the inverse DFTs of ŝr. The FBP operation can be further applied to
obtain the reconstructed CT image.

7.3.3 Optimization Algorithm – Yall1

The proposed problem in (7.10) is solved by the algorithm called Yall1 [159]. It
is a first-order primal-dual algorithm based on the alternating direction method
(ADM).
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Applying ADM to primal problems

The object is to solve:

min
x∈CN

||x||1 +
1

2σ ||Ax− b||22. (7.11)

To start with, (7.11) is reformulated in accordance with (5.8) by intoducing an
auxiliary variable y ∈ Cm:

min
x∈CN ,y∈Cm

||x||1 +
1

2σ ||y||
2
2 s.t. Ax + y = b (7.12)

Its augmented Lagrangian function is written as:

min
x∈CN ,y∈Cm

||x||1 +
1

2σ ||y||
2
2 −Re(λ∗(Ax + y− b)) +

α

2 ||Ax + y− b||22,

(7.13)
where λ ∈ Cm is the Lagrangian multiplier and α > 0 is the penalty parameter.
Firstly, given (xt,λt), the minimizer of (7.13) with respect to y is given by:

yt+1 =
σα

σα+ 1(λ
t/α− (Axt − b)). (7.14)

Secondly, with fixed yt+1 and λt, the minimizer of (7.13) with respect to y is
equivalent to:

min
x∈CN

||x||1 +
α

2 ||Ax + yt+1 − b−λ/α||22 (7.15)

Defining rt = A∗(Axt + yt+1 − b−λt/α) as the gradient of the quadratic term
in (7.15) and τ > 0 the proximal parameter, (7.15) is appoximated by:

min
x∈CN

||x||1 + α((rt)∗(x− xt) +
1
2τ ||x− xt||22) (7.16)

Making use of the well known 1-D shrinkage, or soft thresholding, the solution of
(7.16) is given by:

xt+1 = Shrink1(xt − τrt, τ
α
) := max{|xt − τrt| − τ

α
, 0} ◦ sgn(xt − τrt) (7.17)

where ◦ denotes component-wise multiplication, and sgn(z) :=


−1 if z < 0
0 if z = 0
1 if z > 0

.
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Finally, the multiplier λ is updated by:

λt+1 = λt − ηα(Axt+1 + yt+1 − b).

with the constant η > 0.

To sum up, (7.11) is solved via ADM with iterations as below:


yt+1 = σα
σα+1(λ

t/α− (Axt − b))
xt+1 = Shrink1(xt − τrt, τα)
λt+1 = λt − ηα(Axt+1 + yt+1 − b)

(7.18)

The convergence of the primal-based algorithm is established below.

Theorem 7.1. [159] Let τ , η > 0 satisfy τλmax + η < 2, where λmax denotes the
maximum eigenvalue of A∗A. For any fixed α > 0, the sequence {(yt, xt,λt)}
generated by (7.18) from any starting point (x0,λ0) converges to (ỹt, x̃t, λ̃t),
where (ỹt, x̃t) is the solution of (7.12).

The proof is given in Section 7.3.4.

Applying ADM to dual problems

The dual problem of (7.11) is given by:

max
λ∈Cm

min
x∈CN ,y∈Cm

{||x||1 +
1

2σ ||y||
2
2 −Re(λ∗(Ax + y− b))}

= max
λ∈Cm

{Re(b∗λ)− σ

2 ||λ||
2
2 + min

x∈CN
(||x||1 −Re(λ∗Ax)) +

1
2σ min

y∈Cm
||y− σλ||22}

= max
λ∈Cm

{Re(b∗λ)− σ

2 ||λ||
2
2} s.t. A∗λ ∈ B∞1 (7.19)

where B∞1 := {ξ ∈ CN : ||ξ||∞ ≤ 1}, || · ||∞ denotes the maximum of ξ. The
dual problem can be also solved under the frame of ADM, which appears to be
more efficient.

Similar to the primal problem, (7.19) is reformulated by introducing an auxiliary
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variable z ∈ CN :

max
λ∈Cm

Re(b∗λ)− σ

2 ||λ||
2
2 s.t. z−A∗λ = 0, z ∈ B∞1 .

Its augmented Lagrangian function is written as:

min
λ∈Cm,z∈CN

{−Re(b∗λ) + σ

2 ||λ||
2
2 −Re(x∗(z−A∗λ)) + α

2 ||z−A
∗λ||22, z ∈ B∞1 }

where x ∈ CN is a multiplier as well as the primal variable and α is the penalty
parameter. Given (xt,λt), the minimizer zt+1 is given by:

zt+1 = QB∞1 (A∗λt + xt/α),

where QB∞1 stands for the projection in Euclidean norm onto the convex set B∞1 .
Then, with fixed xt amd zt+1, the minimizer λ is:

λt+1 =
α

αAA∗ + σ
(Azt+1 − (Axt − b)/α).

Finally, x is updated by:

xt+1 = xt − ηα(zt+1 −A∗λt+1),

with constant η ∈ (0, (
√

5− 1)/2).

In conclusion, the dual problem of (7.11) is solved via ADM with iterations as
below: 

zt+1 = QB∞1 (A∗λt + xt/α)
λt+1 = α

αAA∗+σ (Azt+1 − (Axt − b)/α)
xt+1 = xt − ηα(zt+1 −A∗λt+1)

There are two cases for the update of λ. One is when AA∗ = I and the update is
simple and straightforward, written as λt+1 = α

α+σ (Azt+1− (Axt− b)/α). The
other case is when AA∗ 6= I and the update is costly. In this case, a steepest
descent step in λ direction is adopted:

λt+1 = λt − ς∗t gt,

where gt = σλt +Axt − b + αA(A∗λt − zt+1) and ς∗t = (gt)∗gt
(gt)∗(σI+αAA∗)gt .
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The convergence of the dual-based algorithm is also analyzed [159]. Under the
assumption A∗A = I, the algorithm falls into the category of exact ADM. Results
reported in the literature [54,55] show that for any α > 0 and η ∈ (0, (

√
5+ 1)/2),

the sequence {zt,λt, xt} generated by the dual-based algorithm from any starting
point (x0,λ0) converges to (z̃t, λ̃t, x̃t), which is the solution of the primal-dual
pair (7.11) and (7.19). The convergence remains an issue of further research for
the case when A∗A 6= I, however, it is shown experimentally to converge very
well for random matrix A.

7.3.4 Proof of Theorem 7.1

Let (ỹ, x̃) be any solution of (7.12). The optimization theory states that there
exists λ̃ ∈ Cm such that:

ỹ/σ− λ̃ = 0, A∗ỹ ∈ ∂||x̃||1 and Ax̃ + ỹ = b. (7.20)

Suppose
λ̂ := λt − α(Axt+1 + yt+1 − b) (7.21)

then λt+1 = λt − η(λt − λ̂).

The update of y in (7.14) can be reformulated as yt+1/δ− λ̂+ αA(xt−xt+1) =

0. Considering the first equation in (7.20), we have λ̂− λ̃− αA(xt − xt+1) =

(yt+1 − ỹ)/σ, and thus

(yt+1 − ỹ)∗(λ̂− λ̃− αA(xt − xt+1)) = ||yt+1 − ỹ||22/σ ≥ 0. (7.22)

In the yall1 algorithm, the update of x is not updated exactly, and instead we use
(7.16) to approximate (7.15). Hence, it is necessary to conduct the convergence
analysis. (7.16) implies:

αA∗(Axt + yt+1 − b−λt/α) + α

τ
(xt+1 − xt) ∈ ∂||xt+1||1

(from (7.21)) A∗λ̂− αA∗A(xt − xt+1) +
α

τ
(xt − xt+1) ∈ ∂||xt+1||1
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Considering the second equation in (7.20) and the convexity of || · ||1, we have:

(xt+1 − x̃)∗(A∗(λ̂− λ̃)− αA∗A(xt − xt+1) +
α

τ
(xt − xt+1)) ≥ 0

It is known from (7.20) and (7.21) that (xt+1 − x̃)∗A∗ = 1
α(λ

t − λ̂)∗ − (yt+1 −
ỹ)∗. If we substitute it into the inequality, we obtain:

1
α
(λ̂− λ̃)∗(λt − λ̂) + α

τ
(xt+1 − x̃)∗(xt − xt+1)

−(λt − λ̂)A(xt − xt+1)− (yt+1 − ỹ)∗(λ̂− λ̃− αA(xt − xt+1)) ≥ 0
(from (7.22))
1
α
(λ̂− λ̃)∗(λt − λ̂) + α

τ
(xt+1 − x̃)∗(xt − xt+1)

≥ (λt − λ̂)A(xt − xt+1) + ||yt+1 − ỹ||22/σ
1
α
(λ̂− λ̃)∗(λt − λ̂) + α

τ
(xt+1 − x̃)∗(xt − xt+1)

≥ (λt − λ̂)A(xt − xt+1) (7.23)

For convenience, if we define In the identity matrix of order n, and

G0 =

 In

ηIm

 ,G1 =

 α
τ In

1
αIm

 ,G =

 α
τ In

1
αηIm

 ,

x̂ = xt+1, u =

 x
λ

 , ||u||2G := u∗Gu,

then (7.23) can be rewritten as

(ut − ũ)∗G1(ut − û) ≥ ||ut − û||2G1 + (λt − λ̂)∗A(xt − x̂). (7.24)

The iteration of u in (7.18) is now expressed as ut+1 = ut −G0(ut − û), and it
can be shown that

||ut − ũ||2G − ||ut+1 − ũ||2G
= 2(ut − ũ)∗G1(ut − û)− ||G0(ut − û)||2G

from (7.24) ≥ 2||ut − û||2G1 + 2(λt − λ̂)∗A(xt − x̂)− ||ut − û||2G0GG0

=
α

τ
||xt − x̂||22 +

2− η
α
||λt − λ̂||22 + 2(λt − λ̂)∗A(xt − x̂)

118



Chapter 7. Compressed Sensing-Based Sinogram Inpainting for CT
Reconstruction

≥ α

τ
||xt − x̂||22 +

2− η
α
||λt − λ̂||22 − ζ||λt − λ̂||22 −

1
ζ
||A(xt − x̂)||22

≥ (
α

τ
− λmax

ζ
)||xt − x̂||22 + (

2− η
α
− ζ)||λt − λ̂||22

where ζ is a positive parameter and λmax denotes the maxmimum eigenvalue of
A∗A.

To keep on the convergence analysis, it must be satisfied that:
α
τ −

λmax
ζ > 0

2−η
α − ζ > 0

which leads to
τλmax + η < 2. (7.25)

With the condition in (7.25) and the assumption κ = 1− τλmax/(2− η) > 0,
ζ = (2− η)/(α+ ακ) > 0, we have

||ut − ũ||2G − ||ut+1 − ũ||2G ≥ ακ2

τ
||xt − x̂||22 +

2− η
α

κ

1 + κ
||λt − λ̂||22

≥ ε||ut − ut+1||2G (7.26)

where ε = min(κ2, κ(2−η)
η(1+κ)) > 0. We can conclude from (7.26) that:

1. ||ut − ut+1||2G converges to 0, and thus limt→∞Axt + yt = b ;

2. {ut} lies in a compact region;

3. ||ut − ũ||2G is monotonically non-increasing and therefore converges.

7.4 Simulation

7.4.1 Sinogram inpainting

The sinograms of three images in Figure 5.4 are under-sampled randomly and
then interpolated by different methods. Comparisons of the simulation results of
sinogram inpainting in terms of the normalized mean square error (NMSE) were
made between other interplolation methods and our CS based model, and the
results are shown in Figure 7.2.
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Figure 7.2: Comparisons of sinogram inpainting results

Minimal levels of noise were introduced to assess the stability of the algorithm.
Different levels of Gaussian noise were added where the variance was proportional
to the line integral values (a reasonable approximation for CT). The noise of
variance (0.1%, 1%) is adopted here to compare the inpainting robustness in
the presence of noise. The results are shown in Figure 7.3. From Figure 7.2 and
Figure 7.3 we can tell that the proposed model is the most robust and outperforms
other inpainting methods.

7.4.2 Object reconstruction

This section presents the computation results of the proposed CS reconstruction
algorithm on simulated fan-beam sinogram data sets. Three simulation examples
were computed. The first example is the Shepp-Logan phantom data set, and the
second and third examples are CT image data sets. The proposed w`1 regular-
ized optimization algorithm and the existing CSTV algorithm [14] were applied
respectively to the three phantom and image data sets and their reconstruction
results were compared visually and quantitatively, in terms of the least squares
error. The experimental setting and fan-beam scan parameters were as follows:
the object was of size 256× 256, D = 256, γ = [−45 : 0.25 : 45], β were 180 ran-
dom angles in the range [0 : 1 : 359]. For the w`1 algorithm, the fan projections
were converted at θ = [0 : 0.5 : 179.5]. The value of the regularization parameter
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(a) noise of variance 0.1%

(b) noise of variance 1%

Figure 7.3: Comparisons of sinogram inpainting results in the presence of
noise

α for different data sets was empirically selected. The reconstruction images of
the three examples are shown in Figs. 7.4-7.6, respectively. To compare some
details of the reconstructed images, some parts are zoomed and displayed.

NMSE and SNR defined in Chapter 5 and 6 were employed to provide quantitative
evaluation and comparison of the reconstructed images. Table 7.1 provides a list
of the NMSE and SNR values of the images and those of their selected zoomed
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parts reconstructed by the proposed w`1 regularized optimization algorithm and
the existing CSTV algorithm.

Both the visual image display and quantitative values demonstrate that the pro-
posed w`1 regularized optimization algorithm provides better image reconstruc-
tion performance than the CSTV algorithm.

(a) original image (b) zoomed part original im-
age

(c) CSTV reconstruction

(d) zoomed part of CSTV
reconstruction

(e) w`1 reconstruction (f) zoomed part of w`1 re-
construction

Figure 7.4: Reconstruction of Shepp-Logan phantom

Table 7.1: Comparison of reconstructions in terms of NMSE and SNR

Shepp-Logan 1st CT 2nd CT
NMSE SNR NMSE SNR NMSE SNR

whole by CSTV 5.82% 33.81 9.95% 28.14 8.48% 24.99
image by w`1 5.58% 34.03 6.89% 28.97 6.62% 26.77
zoomed by CSTV 7.54% 25.21 10.06% 20.12 13.60% 17.73
part by w`1 6.28% 26.40 7.38% 21.59 7.26% 19.18
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(a) original image (b) zoomed part of original
image

(c) CSTV reconstruction

(d) zoomed part of CSTV
reconstruction

(e) w`1 reconstruction (f) zoomed part of w`1 re-
construction

Figure 7.5: Reconstruction of CT image 1

7.5 Conclusion

In this chapter, we have analyzed the indirect application of CS in CT recon-
struction. A CS approach to the fan-beam CT image reconstruction has been
proposed for the purpose of reducing the X-ray radiation dosage in CT examina-
tions without compromising image quality. The proposed approach is novel in the
sense that it overcomes the difficulties of the existing CS approaches to CT image
reconstruction which have not been able to establish the incoherence and sparsity
conditions required by the CS theory for signal reconstruction. Instead of apply-
ing CS to the reconstruction of the object directly from the sinogram data set,
the proposed CS approach indirectly reconstructs the sparse or compressible DFT
of the sinograms via the optimization algorithm of yall1. The correspondingly
formulated sensing scheme results in a randomly sampled partial DFT matrix
which meets the theoretical RIP condition for CS reconstruction. The proposed
weighted `1 regularized optimization algorithm takes into account the low pass
property of the reconstruction signal and its reconstruction results outperform
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(a) original image (b) zoomed part of original
image

(c) CSTV reconstruction

(d) zoomed part of CSTV
reconstruction

(e) w`1 reconstruction (f) zoomed part of w`1 re-
construction

Figure 7.6: Reconstruction of CT image 2

the existing CSTV reconstruction method. The proposed CS approach has so
far been applied only to the 2-D fan-beam CT data sets and reconstruction in
the noise free case. Its concept and formulation can be further extended to 3-D
cone-beam CT data sets and image reconstruction with measurement noise.
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Conclusion and Future Work

8.1 Conclusion

X-ray computed tomography (CT) is a popular medical imaging modality but
is faced with the dilemma of keeping reconstruction quality high and radiation
low. The emerging compressed sensing (CS) technique, on the other hand, can
recover signals from far fewer samples than traditionally required by the Shannon-
Nyquist sampling theorem. The application of CS in CT is able to reduce the X-
ray radiation dose to patients while preserving imaging quality, and has therefore
been a topic of interest in the medical imaging community. However, there is
a fundamental lack of understanding if the system matrix of CT can satisfy
the restricted isometry property (RIP), an essential condition for successful CS
reconstruction. In this thesis, we carry out the work on the application of CS in
CT, aiming to bridge the existing gap between the theoretical results of CS and
practical CT settings.

After reviewing the fundamentals of CS and CT in detail, we proposed the Fourier
slice theorem (FST)-based CT model in Chapter 4. The object is to connect CT
with Fourier transform, of which the RIP is well defined. With the preliminary
knowledge of FST and the relation between different Fourier transforms, the
projection model of parallel-beam CT was established and the error analysis
indicated that the sinogram error becomes negligible when the padding size is
sufficiently large. We continued to apply this model to fan-beam CT and depicted
fully what the model is like for full-scanning, sparse-view and sparse-detector fan-
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beam CT, respectively. The model building in this chapter laid the foundations
for the subsequent analysis.

Chapter 5 presented the core investigation of the incoherence property of the
CT data scanning schemes. We have analyzed which type of under-sampling is
favourable to CS reconstruction. The work was conducted based on point spread
function (PSF) and FST, respectively. The Frobenius norm of the difference
matrix between PSF and the identity matrix was proposed as an evaluation in-
dex, and was shown experimentally to be more sensitive than another index, the
sidelobe-to-peak ratio. Based on FST, the system matrix was decomposed to
the Fourier matrix and our problem was converted to the study of sampling on
the Fourier matrix, which involved the equivalence of the synthesis and analysis
model, the viability of CS with coherent and redundant basis, and finally the
RIP of distinct block diagonal matrices. The conclusion was drawn that golden-
angle and random-detector scanning is the most favourable for post-CS-based
reconstruction.

We further analysed the application of CS in CT by proposing two novel recon-
struction models for the reduction of X-ray radiation dose in CT examinations
without compromising image quality by CS. In Chapter 6, the CT projections
were first converted to Mojette projections, an exact discretization of the Radon
transform. On each view angle, the projections were summed up with the ap-
plication of certain principles. 1-D Fourier transform was then applied to the
merged Mojette projections, followed by an exact mapping of the gained Fourier
coefficients to the 2-D Fourier domain of the scanning object. Finally the scan-
ning object was reconstructed from the partial Fourier coefficients by CS with
mixed constraints of TV and wavelet minimization.

In Chapter 7, the smoothness of the sinogram data set and the sparsity of its
frequency transformation were exploited which, in conjunction with a randomly
projected X-ray radiation scheme, can result in a randomly under-sampled partial
Fourier matrix as the sensing matrix for CS reconstruction. The formulation of
this CT data acquisition and reconstruction scheme satisfies the incoherence and
sparsity properties required by CS theory. Based on this scheme, a weighted `1
regularized optimization algorithm is proposed for computing the CS image re-
construction. The reconstruction performance and advantages over other known
CT reconstruction methods are demonstrated by simulated phantom and CT
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images.

8.2 Future Work

We list some possible directions for future research.

• Extension of CS to statistical CT reconstruction in theory and implemen-
tation

In Chapter 4 and 5, we have investigated the direct application of CS in CT
reconstruction from theoretical and implementation perspectives. Although
the algorithms exploited here is closely related to the ART-based problem,
it is stated in Section 2.4.2 that the statistical reconstruction technique
can potentially obtain better results as it considers the noise during the
scanning process. This inspired the idea of extending CS to statistical CT
reconstruction. While some attempts have been made to incorporate CS
within the framework of statistical reconstructions [33, 87–89], no-one has
tackled the RIP condition of the statistical formulation to the best of our
knowledge. Compared to the ART-based model, the statistical model is
more complicated, which makes the application of CS more challenging and
interesting for future work.

• Application of CS to 3-D cone-beam CT

The current work has been mainly done in 2-D and a straightforward idea for
future work would be to extend the results to 3-D cone-beam CT (CBCT),
which is becoming increasingly important in treatment planning and diag-
nosis. We have done some initial work on CBCT. For example, the formula
and implementation of FDK and the Katsevich algorithm have been stud-
ied, and some simulations have been conducted to validate the theory. Af-
ter building the system matrix, we have also tried to do the reconstruction
based on CS in two ways. One is to reconstruct layer by layer, and the other
is to deal with the voxel data. The first method is essentially 2-D and easy
to implement, but at the same time quite slow as each layer is reconstructed
separately, and some measurements are neglected and wasted because they
involve different layers. In contrast, the other method is more promising,
which applies CS directly to the 3-D system by minimizing the TV norm
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of the 3-D object. The specific implementation can be found in [67]. The
difficulty with the latter method is that the system matrix is massive for
storage and calculation at each iteration. In addition to the implementation
of CS, we are also interested in the theoretical analysis. 3-D CT scanning
has a higher degree of freedom as there are more parameters, which leaves
us abundant choices of different sampling schemes. Similar to the work that
we have done for 2-D CT scanning, it would be beneficial to find out which
schemes are favourable for post-CS-based reconstruction. In other words,
it is important to know how the radiation can be reduced while affecting
quality the least. Hence, the future work is to continue with the study of
CS in 3-D CBCT.

• CT reconstruction on GPU

With progress in imaging systems and algorithms, the computational com-
plexity of image reconstruction has increased dramatically, which leads to
increased processing time for current reconstruction techniques. However,
fast image reconstruction is often required to deliver a prompt diagnosis
and even more critical in real-time imaging applications, such as intraop-
erative cone-beam CT. The graphics processing unit (GPU) has emerged
as a competitive platform for computing massively parallel problems [120].
To exploit the capabilities of GPU, CT reconstruction problems can be
formulated as data-parallel tasks for efficient implementation. Since the
analytical reconstruction is fully parallel, the accelerated versions of FBP
for 2-D images [53] and FDK for 3-D images [111, 114] have been imple-
mented successfully. In contrast, iterative reconstruction is fundamentally
sequential, therefore computationally challenging for GPU acceleration. For
example, the algebraic reconstruction technique (ART) cannot be imple-
mented efficiently on GPU because each iteration only processes a single
projection line. Some efforts have been made towards adapting iterative
algorithms on GPU, such as simultaneous ART [104], expectation maxi-
mization (EM) [31, 156], ordered-subsets EM [31, 157], and TV minimiza-
tion reconstruction [70]. Inspired by these precursory studies, the future
research direction can be to implement the CS-based algorithms developed
in this thesis on GPU, aiming at highly efficient and accurate reconstruc-
tions. The sparse property of the CT system matrix can be favourable for
implementation, because the efficient matrix-vector multiplication is per-
formed implicitly with a procedural algorithm rather than explicitly with
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the matrix multiplication formula.
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